
CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 1
CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
I found getting to Kothen straightforward. A cheap flight from Stansted to
Erfurt was followed by a two hour train ride with one connection. In
Glasgow central station, the staff often have no idea which platform a train
will arrive at until it does. In Germany, you get a print-out of the departure
and arrival times and platforms of your initial train and your onward
connections. I was impressed and surprised, but my surprise grew less
when I learned that German train-management systems are written in
Smalltalk. On the way back, I also learned that if the station information
desk was closed, the automatic ticket machine could give you the same
information in the language of your choice. (This ticket machine would not
accept the credit card that Jim Robertson had forgotten to remove from his
jogging shirt pocket before putting the latter in the washing machine, but I
think that was excusable, given the card’s new and unusual shape :-)).

Although few places could compare to the spectacular landscape and
architecture at Bled, Kothen was pleasant enough, with well-maintained
old architecture rather than DDR-style concrete blocks. Kothen has a long-
standing musical tradition (the counts of Anhalt appreciated good music
and Bach spent the pleasantest years of his working life there), reflected
both in the Bach that was played to us (in the same room of the castle in
which the master played it formerly), and in the jazz that Georg arranged
for those who wished to hear something more recent. Between recitals (of
Bach; I skipped the jazz :-)), Georg’s wife gave a brief talk on ‘Language,
Culture and Software’, with some amusing examples of what could happen
when software localisation was done without attention to context.

Cincom sponsored us to tea and cakes in the open-air railway museum (I
especially liked the elegant old-style dining car) after which we first toured
Ferropolis (formerly a hideous open-strip DDR coal mine, now flooded to
produce a peninsula concert ground much liked by techno bands whose
‘music’ recalls the noise the mine used to make) and then went to the far
more elegant 18th century town of Worlitz for dinner.

Style
In the text below, ‘I’ or ‘my’ refers to Niall Ross; speakers are referred to
by name or in the third person. A question asked in or after a talk is
prefaced by ‘Q.’ (I identify the questioner when I could see who they
were). A question not prefaced by ‘Q.’ is a rhetorical question asked by the
speaker (or is just my way of summarising their meaning).

Author’s Disclaimer and Acknowledgements
This report was written by Niall Ross of eXtremeMetaProgrammers Ltd.
(nfr@bigwig.net). It presents my personal view. No view of any other
person or organisation with which I am connected is expressed or implied.

There was much activity in the Camp Smalltalk room, only some of which
I learnt enough about to summarise (with possible errors) below.
Inevitably, my notes treat my project in much more detail than others.

2 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
Likewise, the talk descriptions were typed while I was trying to keep up
with and understand what the speakers were saying, so may contain errors
of fact or clarity. I apologise for any inaccuracies, and to any participants
whose names or affiliations I failed to note down. If anyone spots errors or
omissions, email me and corrections may be made. A single programme
track (save on Friday) meant I caught most talks; apologies to those missed.

My thanks to:
• Adriaan van Os for helping run our CS project, Petr Stepanik for

working in it, Alan Knight, Martin Kobetic, James Robertson, Wim
Lybaert, Bernard Pieber, et al. for demos, goodies and/or explanations
that helped it, and Daniel Vainsencher for setting up what, for me at
least, was the smoothest-running network of any Camp Smalltalk

• the speakers whose work gave me something to report, the conference
sponsors (Cincom, Eranova, GemStone, Georg Heeg, Impara, Bedarra
Research Labs, smalltalkedVisuals, Hochschule Anhalt), and the
ESUG organisers (Stephane Ducasse, Noury Bourakadi, Roel Wuyts)

• above all, Georg Heeg and his team of local organisers for a conference
that was impressively professional, both visually and administratively,
while at the same time being cheap to attend.

Summary of Projects and Talks
I begin with some Camp Smalltalk 9 project summaries, followed by the
talks, sorted into various categories:
• Smalltalks, Old and New
• Frameworks
• Selling Smalltalk: Commercial Issues and Experience
• Applications and Experience Reports: Commercial and Technical
• Tools
• Porting Projects
and then the Academic Track:
• Awards Candidates
• Research Talks
I close with Other Discussions and my Conclusions. Talk slides are
reachable from http://www.esug.org.

ESUG Programme, Stephane Ducasse and Roel Wuyts
Stephane thanked ESUG’s sponsors. He mentioned smalltalkedVisual’s
sponsoring a student to attend as an example of the range of ways one could
sponsor. ESUG has a new wiki, built on SmallWiki which offers a website
that does not look like a wiki yet is as easy to manage. ESUG continues its
teacher starter package and teacher excellence package activities: books,
slides, exercises. If you can use these, visit www.esug.org/sponsoring.

As usual, they have experimented with conference format. This year we

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 3
have:
• a business day
• a parallel-track education day
• an academic research half-day, as at last year’s conference track
• technical innovation awards prizes
Roel welcomes feedback.

New Smalltalk user groups have been set up in Italy, the Netherlands and
Sweden. It is easy for a group to start with a simple mailing list, then
become an organisation; in France, they started with a mailing list of 3 and
now have more than 100.

Seaside: the opportunity exists now. Go to Avi’s and Adrian’s talks. Show
Seaside to PHP programmers.

Stephane discussed open-source Smalltalks and their contribution to
visibility. Smalltalk/X is free but the licence, though it has no real issues,
is not a standard known one. Squeak has a known licence but there are
some issues with it. A known-to-be-issue-free licence is essential. If the
licence is not immediately recognised as a known issue-free one, many
organisations will not even take the time to look at it.

The head of the hosting institution, Hochschule Anhalt, then gave a speech
in German. I think he was essentially just saying, “Welcome to Kothen,
Smalltalkers.” Georg Heeg’s reply was witty, to judge by the laughter.

Camp Smalltalk 9: Project Summaries
The decision to hold the Camp Smalltalk weekend after the conference,
instead of before, was required by room availability; it was not a schedule
experiment. We had a lively Camp Smalltalk. However I think holding the
CS weekend before is better, since then you do form groups and do
significant work during the initial weekend session and can use odd hours
during the conference to discuss and advance specific points. You are less
ready to exploit spare time during the conference if you have not had this
preliminary weekend to get you started.

Camp Smalltalk 9 ran during conference breaks, afternoons and some
evenings of the five conference days, and over the following weekend.
There was much activity with 18 people still there on the last Sunday. I
heard a lot of, “Come and look at this!”, and almost as much, “Come and
look at this bug!”

The Custom Refactorings and Rewrite Editor Usability Project
I spent most of my CS time on this. Adriaan van Os and I, helped by Petr
on Sunday, worked through the bug list, almost all to do with the dynamic
refactoring UI. One exception, a problem reported by several people in
loading our current release from the Cincom Open Repository (‘XML
element not unique error’) puzzled me greatly for a while since I was
getting warning-free loads. Alan realised it was nothing to do with Store or

4 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
our release. The VW7.2 and VW7.2.1 ESUG disks have a corruption in one
method of one parcel that does not appear if you install with a key from the
Cincom NC release; very odd. If you see this, reinstall from a Cincom CD.

We also looked at a suggestion Blair had made to me for ‘extract with
holes’: the ability to select text for ‘extract to self’ or ‘extract to
component’ and then select within it those parts that were not to be
extracted. The main issue for this was working out a UI. We had thought of
doing the secondary selections in a read-only code tool pane. Discussion
with Martin and Alan persuaded us that it would be better to extend the
extraction dialog window with this pane; display the extracted text and let
a user iteratively select sub-parts and add them as parameters to the dialog.

Wim Lybaert integrated the Zork-Analysis Browser (which does code
coverage and type recovery) with the RB’s navigator. After he and I
worked out why Wim was not seeing the type-recovery-coloured code on
his machine (compatibility with something else he had loaded), he began
work on integrating the type recovery as a code tool. There was also
discussion about integrating Michel Tilman’s abstract grammar, which
powers this, with the Refactoring Browser’s parse nodes.

Michael Prasse could not make it this year, alas, but we considerately :-)
saved a VA code-colouring bug for him to look at off-line, that being his
area of expertise.

Other Projects
Daniel, Avi and others worked on Monticello. From the conversations I
overheard, I gather they found a counter-intuitive but effective solution to
a key issue. AOSTA was progressed; see the ‘future plans’ section of the
talk on it for details. Alan Knight did some GLORP work (see his talk) and
James Robertson added withStyle to BottomFeeder; he was impressed with
how straightforward withStyle was to use.

Georg Heeg worked on integrating ObjectStudio and VW. Allowing the
declaring of blocks inside literal array declarations was a key enabler of
this, for reasons of syntax (Georg thinks it may also enable certain
optimisations).

A good deal else was going on; try Jim or Avi’s blogs for more info.

Smalltalks, Old and New
Keynote: Dan Ingalls
Roel introduced Dan as, “Well, Alan Kay had this vision and Dan was the
guy who was able to code it all up.” You can still find his code in Squeak.

Walking down the street to his hotel, Dan passed Georg’s ‘Smalltalk’ van;
Dan feels welcome here. His talk was about a couple of things he’s been
doing for the last year, and about why he is excited again about Squeak.

Dan showed a weather station website he has designed, displaying data
collected by sensors (the demo displayed old data; people remarked it was

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 5
hotter than that today :-)) along with tides, phases of moon, wind data, etc.
Will it be a good day for sailing, for golfing, for any sport that cares about
weather? Dan once did this in VisualBasic 15 years ago (took quite some
time) and sold it to companies. Recently he did it again in Squeak (very
quickly) and now sells it to sailors and golfers, who are people with money
to buy home weather stations. Now in Squeak he can run this on a Mini-
ITX board off 12v (so his customers can run it in their cars, getting data
from their home weather stations).

Q. What OS? Michael Reuger did a compact Linux port.

With Ian Piumarta, he has just ported Squeak to 64 bits, on request from
HP who has a customer who wants to do big things in Squeak. Serious
industrial use of Squeak is good for it.

Dan then looked back at Smalltalk’s past. Dan worked (on speech
recognition) across the hall from Alan Kay and one day he and Ted Kahler
asked him about all the interesting things they heard talked about in his
office. Alan had noticed that many specific projects all needed message
interfaces, so why not treat everything as a message interface. Two days
later, Alan brought them a hand-written description that Dan implemented
as a Basic interpreter; it took one minute to compute 6 factorial. Then he
rewrote it in machine code and that was Smalltalk 72. Dan showed us the
bootstrap file for ST-72. It was read by a token interpreter to which a colon
meant bind the next thing in the stream to the name following the colon.
They also tweaked the font so @ was a smiling face (Alan liked to change
the fonts). It was easy to make something happen on the screen, in those
days not a common feature, so easy to interest children.

ST-72 was not very reflective: you could access and edit the token vector
that was the code. To Dan a meta-system is not just one in which the
language is described but must also be able to describe the environment; in
an afternoon, people could change how their windows looked. Dan showed
a few Smalltalk-72 things (in his Squeak presentation environment).

They learned that ST-72 was a delightfully simple language and a great
scripting language, with a small kernel (15 classes, 160 ‘methods’, nice
primitives (easy to draw lines, rectangles, ...) and a hint of reflection. It was
too slow, had no inheritance and inadequate modularity; integrating two
large applications was very unpleasant.

Q. Funded? Alan had a project with a local school using it to teach 7-9 year
old children OO programming. (Later, he hired a couple of them to the
group at age 14 or so.) They also had their research budget.

ST-74 (more reflection: objects to control memory stream, debugger). Alan
wanted to make things easier while Dan wanted to make things faster so he
wrote a byte code engine in ST-76. ST-76 had inheritance. It preserved ST-
72’s English-like syntax.

Dan showed us the ST-76 definition file. He had not managed to revive ST-

6 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
76 to the point of demoing it as he did ST-72. Then Helge Horsh realised
that he could get ST-76 working by hooking the primitives to Java. One
day, Dan received an email with a jar file. He clicked on it and there was
Smalltalk-76. Dan demoed it, opening windows (after the usual demo
hiccough) and showed the base class hierarchy. “It’s fun doing archeology
in Smalltalk because you have all these power tools available.” (Helge’s
ST-76 URL is http://home.netsurf.de/helge.horch/esug/signum.html)

There was a brief excursion into ST-78. ST-76 had a virtual memory (called
OOS or more often ‘ooze’ because it moved so slowly). ST-78 had a much
simpler 16k virtual memory built for an experimental portable computer
(‘the notetaker’) that Xerox did not develop.

ST-80 had metaclasses (ST-76 has class Class but not the parallel metaclass
hierarchy), booleans (ST-76 was more like Lisp where everything is an
object or nil), blocks (ST-76 was more like an eval: approach). Dan has
ported Vassili’s Hobbes system to Squeak. He demoed it running in Squeak
(doing Smalltalk at a 45 degree angle :-). Dan also got Apple Smalltalk
(ST-80 from 2 years later; easier to use with one button and simpler public
domain licence) working as a version of Hobbes.

These old Smalltalks taught them key ideas.
• You can win with messages + inheritance.
• Bytecodes are small and fast. (Alco had 512 of microcode that ran 10

times faster than other code. That prompted them to think about how to
get the inner loop into microcode, and so to do bltblt and bytecodes).

• Meta is a win; classes and contexts as live objects. You can change it
day by day and that is how systems get better.

• You can have a small yet complete Kernel.
ST-80 is the same engine; this has stood the test of time. Looking back, he
feels that:
• The parallel meta-class system is a little confusing and over-elaborate.

Prototypes would be more general
• Side effects are problematic. Lex Spoon tried to make a secure Squeak

(Island’s project) and learned that shared mutable state is a problem.
Local side effects are OK but global ones are not. There needs to be
something in the meta-system that makes that scoping distinction.

• Some subclassing is problematic. Somehow, clean kernels get messed
up. Clean packages are hard to build. Try destroying class Integer and
then reaching a safe system; Dan has done it but it was very hard and
should be easier.

Dan’s Smalltalk Zoo project will be a reconstruction of 72, 76 and 80.
Squeak has to model every memory cell because it must translate to C but
if you skip that requirement it is simpler. He aims to have a boot-anywhere
CD from which these can be run, thus a Zoo of live Smalltalks, not a
museum of dead ones.

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 7
Q. Put the zoo in Croquet so we can visit it. :-)

In July of this year, while finishing the 64 bit Squeak VM work, HP had a
security conference. Dan almost did not go but did. In the course of the day
he became a believer in security. E is a language/system/architecture for
secure distributed computing (some similarities to Linda; for E info, see
www.ERights.org). It can be implemented on Squeak. A version exists in
Java but it is much more powerful when run on a pointer-secure language.
Mark Miller: “Security is just extreme modularity.” Squeak, ST-80, etc.,
are simple but just loose enough that as we make them bigger they get more
complicated. Security architectures are complicated but what they are
trying to do is simple. Dan thinks that a 64-bit VM with security done right
in Smalltalk would not just be very commercially significant. It would also
solve some basic issues. Fast, secure, distributed will pay the rent and can
be kept simple so it is still fun. It may also address exploiting multiple-
processor architectures, which require similar solutions. Implementing E in
Squeak is half-done and Dan will be working on it when he gets home.

Q(Andrew Black) ST-80 had (which ST-76 did not have) the ability of user
to change the protocol in a class? Yes, it gave instance-specific behaviour
on the classes (instance creation methods were the major initial concern).
Dan recalls using ST-76; it was not so bad without them. Georg Heeg has
been told by Adele that meta-classes were a demo of how to do instance
creation methods, done by Dan one night and never pulled out (mind you,
could that not be said of many features of Smalltalk?); Dan confirmed this.

Q. There is a Java project (called Groopie?, Groovie?, ...) in which meta-
classes are being added. Is it a good thing? Hmmm...

Dan prefers to recreate these Smalltalks in Squeak rather than e.g. on an old
Alco as he wants to understand how the interpreter, base system definition,
etc., works rather than how the old instruction set worked.

Q. Children have problems with the precision required by computing; we
need to make systems less brittle for them. Could security by modularity
help that goal as well? Interesting thought; could be.

Q(Roel) “Connectivity begets Connectivity”. Objects rather than strings
passed around can improve security. Thus Roel agrees with Dan that this is
an opportunity.

Q. Modularity should be unit of deployment as well as security? Dan is not
yet sure. The question is, with images or without? We could move to an
environment where each module is like its own image, rather than moving
modules into larger images. Dan must do more work to find the right
solution.

Q(Claus) VM-level mechanisms borrowed from the functional
programming guys? Support running multiple versions of the same class in
the same image? Reference classes by 64bit UUID, not by name? Dan has
found his favourite Smalltalk programs were functional. These ideas could

8 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
show which pieces to configure.

Q. Can we have an asynchronous Smalltalk? Andrew Black’s answer is
yes. Timber is their asynchronous language in which each object is like its
own monitor and all messages run to completion. It has no inheritance
because they can’t work out how to do that yet. This can be done in
Smalltalk by changing the evaluation defaults, doing side effects explicitly.
Roel: Smalltalk already has Promise, an asynchronous construct.

SW Vision Smalltalk, Frank Lesser
His smalltalk has deep OS integration, .Net integration and 10,000 classes
and 100,000 methods in its frameworks. Frank started this in 1994 as a
private project, influenced by VSE. DaimlerChrysler ordered it as a
replacement for VSE in 2000. In 2001 they ported part of the VM to
Squeak and also began work on .Net bindings. They built a reflection
browser for .Net and now have a team development environment. The
current released version is LSW DotNet-Lab 2.0.

Their OS integration uses native widgets and binds to most Windows APIs.
Their .Net integration uses reflection at the binary level. The base
development environment has class and hierarchy browsers, inspectors,
etc., and a team development environment. He demoed; the IDE reminded
me of Dolphin - package browser with windows feel, expandable tree lists,
etc. It addresses the common Smalltalk IDE problem of too many windows
open: panes are switched depending on the selection in the globals view.

Libraries can be used in pure form or embedded in Smalltalk assemblies.
A smalltalk assembly can be made into an ordinary DLL. Method browsers
can be switched between Smalltalk, Smalltalk Assembler and decompiled
source views. A cross-referencing tab shows various cross-references to
other selected items (a little like the Classification Browser’s pre-provided
method-oriented intensional classifications).

They have MSDN integration in the browser, based on their HTML pane
(appearing as a code tool in the browser). Refactorings are integrated into
their package browser. Frank showed the inspector (tree-list expansion of
instance variables), debugger, source code control tools, etc.

Their low-level Windows bindings are subclasses of ExternalHandle,
ANSIWindowHandle and UnicodeWindowHandle. Their framework does
not use events; they saw them as unperformant and hard to debug. Instead,
they use entirely the visitor and strategy patterns, i.e. not

self triggerEvent: anEvent
but

self eventVisitor: event from: self

Every class must have an eventVisitor: method. Context-sensitive
refactorings to add these are provided. For every Window class there is a
Strategy which owns one or more visitor instances. These retrieve
parameters for API functions. One drawback of their approach is that the
Object class is huge with all these methods.

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 9
Q. Are you planning for future evolution of .Net, especially in GUI? Yes,
that is an issue for us. Our refactoring framework for visitor pattern, etc.,
should help here.

Q. Commercial use? .Net reflection browser and other tools. They do this
simply, since .Net is such that it makes a lot of difficulties for Smalltalk
vendors (c.f. Dave Simmon’s work). In Java or C#, adding a method needs
recompiling; good for hardware vendors but bad for developers. Frank
finds that .Net developers don’t believe what they see in Smalltalk. Frank
thinks the .Net kernel is rubbish, thus they prefer to use their own bindings.
Use of .Net for Smalltalk: web servers need .Net bindings.

(Frank had to stop for time here; he had more to say re .Net integration.)

Smalltalk/X, Claus Gittinger
Externally it looks like other Smalltalks but the internals are different.
Claus does not use native widgets, everything is unicode. The browser is
basically the multi-tab RB (which you rarely see elsewhere). Claus built a
small GUI to show how (use builder, set some parameters) and then used it
to raise a debugger and write the model method. He invoked some very bad
GUI code to demonstrate how robust the debugging is (and was hit by the
usual demo hiccough; base system interrupts not set in the correct way).

He showed using the debugger on the many process he had running. The
dispatch loop catches the control C event and opens the debugger on it. The
same architecture has been implemented in VW in recent versions.

He browsed the frameworks (HTTP server, etc.). Everything is dynamic;
no recompiling. Claus configured services for the HTTP server and
brought up a browser, looked at a ‘hello world’ service, changed the code
and we saw the change take effect.

Smalltalk/X differs from other Smalltalks because Claus started without
any image, etc. He read the paper in 81, decided he wanted that, had
nothing else, knew C translation, so generated C (or primitives) from
Smalltalk files. Claus called
make hello.c “to show use, otherwise do make hello.o”

and showed the C. He pointed out his in-line cache, using an indirect call
as you cannot actually cache in C. The send function gets a pointer to the
in-line cache and thereafter points directly to the cache. Dave Ungar
inspired Claus to do it this way. That’s how Claus started 15 years ago
writing this in vi. The runtime library (send function, cache, etc.) links into
the specific Smalltalk code. Claus then showed hellomicroworld.c (using
primitive, statically linked) to show how small it can be.

Thus Claus created a non-GUI smalltalk. Next he built a parser, then a view
library, initially for X windows (thus the name, Smalltalk/X); nowadays it
also supports Windows (and anything else people pay for). He browsed the
Array class, showing its primitives written in C. He showed compiling to
C and to assembler. Thus very optimised, very tiny executables can be

10 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
created, or you can build the whole Smalltalk/X framework and your app
into a single executable. Claus showed writing stdin / stdout filters (which
worked once the audience corrected his spelling :-).

Q. Can save image? Yes but images not portable across machines presently

Q. Licence? Open-source except for ST compiler (he will give it to you but
he does not want that open-source) for (almost) any use, subject to always
crediting ST/X. They tried to sell it as a tool but only sold 50 - 100 licences
a year max, so they make their money from projects (for users who are
sufficiently fed up with Java or C# that they just ask for fast executables).
Thus they cannot find time to support novice users, e.g. ‘Why does this
(windows) file not start on my (Linux) machine’ type users.

(I think a question on code management elicited that Markus Schwarts had
done some work on an Envy-like system, but I missed the details.)

Squeak Demo, Stephane Ducasse
Squeak is a dream catalyser for language research, web development and
etc., with a powerful community. Stephane showed Seaside to some PHP
programmers; now they use Smalltalk.

Stephane showed a range of impressive and fast graphical displays, some
driven by the code on his slides. He showed grabbing a graphic (an avatar)
and moving, dilating and rotating it, etc., while the avatar still followed its
program (to wave its arms and smile and so on). He created a piano icon
and played it while rotating it, useful for simulating the livelier sort of pop
group. He showed a gas simulation, atoms bouncing around as their
bounding box was moved and changed.

Squeak 3.7 is the current version. Internationalisation is being done and
will be in 3.8. Chinese, Kanji, etc. Stephane showed it.

The look of Squeak can seem a bit way-out-there so they also offer
conventional windows looks, and some less conventional ones. Some
native widget work is being done, as is an Objective-C and Cocoa bridge.

Faure and Dynapad are PDA Squeak projects. Genie is the handwriting
recognition project; steer Squeak with a pen. Genie outperforms standard
windows software. there are many music, sound analysis, etc., projects.
(Alan Kay, who was a Jazz band player, can ‘play’ Squeak impressively.
Alan has a demo of synchronising music to soundtrack of movies, just
speeding or slowing tempo etc. to make notes coincide with action.) Dan
Ingalls showed what the various lines meant, changing modulation and
timbre of the notes. Thus you can work on one of the instruments while
Squeak is playing a midi score, changing that instrument’s setting and
hearing the effect as the score plays on. Dan had a customer of his weather
station who wanted to call home and get the weather. Dan provided that
feature in an hour using the avatar-speech code.

Stephane built a plane controlled by joystick, to show how easy it was.

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 11
Then someone from the audience stepped up and did a fractal. He gave
himself a field, three corner objects and a pen. Using the script editor only,
he wrote a script for the pen to choose a corner at random, move half-way
to it, draw point. A triangular fractal pattern was created. Then Stephane
drew a curved road and a car and programmed the car to stay on the road.

Squeak is used in Spain on 80,000 PCs taught by 50 teachers. Morphs can
be moved between desktops to create distributed games.

Scratch is an MIT MediaLab project built by the LegoMindStorms and
StarLogo inventors. It is a much leaner Morphic. Stephane showed
StarLogo, an ant-pheromone system simulator. There were also 3D demos
of Alice, ships, etc., and Squeak in web browsers.

The slides list the URLs for all these projects. Download and try out if
interested. Stephane learned almost all these things just by trying. “When
looking at a Squeak project, it’s important you press every button - you
never know what you will find.”

AOSTA, Marcus Denker, Software Composition Group, University of
Berne
(See talks by Paolo at last ESUG and Eliot at last two Smalltalk Solutions).
He reviewed what AOSTA was and then looked at compiler generation.

We have really good JIT compilers already (there is one for Squeak) but we
do not have the higher-level optimisations that Self introduced. AOSTA
uses the JIT compiler plus Smalltalk to let profiled execution identify
hotspots and compile to optimised bytecodes, dynamically decompiling for
debugging. The idea is that optimised code works as now but unoptimised
code also does profiling: counters for each send and backward send,
collecting type information, etc. Bytecodes build up Single Static
Assignment form where we optimise and compile back to bytecodes.

Marcus’ talk is about how to generate bytecode back from SSA.

The design’s front-end (bytecode-to-SSA) and middle (SSA framework
and optimise) is already implemented in VW. In 2004, they are doing the
back-end transformation out of SSA, a simple code generator (written in
Squeak, since he is a Squeak user, so he ported the whole AOSTA
framework to Squeak).

In SSA, each variable wants one assignment. Hence code like
a == 3 ifTrue: [b := 2] ifFalse: [b := 1]

is transformed into two assignment paths that are then merged (the program
will go one way when it runs), thus a third assignment. This is good for
optimisations but you must remove the path-controlled merge-assignment
(called the ‘phi’ function) before you can generate code. The canonical
method is to model what the phi function means, rework to this and then
generate. Alas, this combines wrongly with some optimisations. An
additional parse to handle this is not pleasant.

12 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
A better idea is to notice that you can transform the SSA tree, so transform
it that all variables in phi are the same
a1 = phi(a1, a1).

Now we can remove phi easily. This means that if you have no
optimisations then you need no copies and if you have some, simple
heuristics let you handle the copies. You always have fewer (e.g. 16000
with the canonical method reduced to 1000 with this approach) for the
same degree of optimisation. The tests system is easy to build:

ir := IRBuilder new
rargs: #(self);
pushLiteral: 1;
returnTop; ir

aCompiledMethod := ir compiledMethod.

Execute
aCompiledMethod valueWithReceiver: nil arguments: #() 1

Install
Float addSelector: #test withMethod: aCompiledMethod

Marcus walked us through an example, selecting his code on the slides and
doing it (talk presented in Squeak).

Future experiments: do AOSTA on Squeak with jitter. Does it make sense
to run this just with an interpreter? Use Exubery as a back end?

Now that we have a translator, what does this enable that we could not do
before. In Squeak, instVars are accessed via offsets. If you add an instVar
to a class, then you must recompile or else recompute the offsets of all the
affected classes - bad! With a translator, you could late-bind instVar access
and generate bytecode on the first access. When you add an instVar, just
invalidate the cache. You can also improve the meta-object protocol.
MetaClassTalk in Squeak runs 500 times slower than Squeak. ClassBoxes
are slower too. Both can be helped by this.

Q(Niall and Avi) status of VW? Eliot hopes to restart work on it this year.
Marcus work will be on SqueakSource soon and can be ported to VW.

Q. Could be used for generating other language bytecodes? Yes, perhaps.

Q(Andrew Black) Use this for Tau-optimisation? (Answered by Bryce)
You can do tau-optimisation even without SSA and with blocks but then
your debugger cannot tell how you got to where you are when it opens.
What do you want, tau-optimisation or a working debugger. You could do
tau-optimisation after you found that last bug - if you think you are ever in
that state. (Avi, you can do a lot towards it by adding just five lines of code;
he did work on that a while back.)

MicroLingua: an extended conceptual model for Smalltalk, Maurice
Rabb
I also recorded this talk in my Smalltalk Solutions 2004 report. Here I

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 13
summarise more briefly, noting fresh points.

DynaGlyph is a dynamic font engine for fancy watch graphics, etc.
Inspired by Alan Kay at StS2001, Maurice wanted to build a fast,
lightweight, small real-time VM for concurrent flash apps. He demoed
watch and raffle-ticket apps. Alas, 2001 was not a good year to get funding.
He lost his second round of funding. He has finally resolved intellectual
property issues and now can open-source it.

He wants things that are said often to be sayable quickly and things that are
important to be easy to say correctly. In embedded systems, fast access to
fixed size integers is important. He use a ~ prefix to +. -, *, etc., operators
to mean ‘return something of the same precision as the receiver’. He uses
a ! prefix to mean immutable, ‘ to denote mutable (e.g. in the debugger, just
to make it crystal clear). In MicroLingua, FixedFractions do not reduce
(improves performance and programmer understanding). InexactNumbers
display themselves showing the trustworthy precision.

Smalltalk has a great object story but, when you work on concurrency, he
sees self as violating encapsulation. He therefore eliminates self and so
eliminates direct access to instVars.

“The selector space is Smalltalk’s most precious resource”, Alan Kay.
Smalltalk tries to model spoken language but he feels software is a written,
not a spoken, language. This motivates him to suggest changing some basic
selectors (see my StS2004 report; following discussion there, Maurice is
ready to drop some of the more contentious syntax changes) and to propose
treating symbols typed without whitespace as evaluated together, thus
changing the precedence rules (2/3 + 4/5 = 22/15). He uses double-dot
statement delimiters to make statements asynchronous. In the future he
wants to reduce the overloading of nil and refactor the collection hierarchy.

Q. Licensing? MicroLingua is open-source BSD licensed.

Q. Maybe concentrate on the domain additions (fixed precision) rather than
contentious language changes? He agreed; the former will help Squeak, the
latter he cares about but will sacrifice to gain forward movement.

Frameworks
Keynote: Winning the Application Server Arms Race: Using
Smalltalk to Redefine Web Development, Avi Bryant
(I’ve already described this talk in my Smalltalk Solutions 2004 report but
Avi made some additional points this time and the questions were different,
eliciting additional explanation, so I have detailed it in full again.)

Web apps are really awkward things (“I’m more of the mind that HTML-
based apps suck.”, James Robertson.) so why do we bother. They are used
because they are everywhere: you would not download individual clients
to do all the things you do via web apps.

14 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
Applets failed not because Java was not everywhere but because they were
not the web. By the time applets came around, users had a mental model
about the web that included the back-button; browser-based apps that were
not web apps did not fit this model. A web app should feel more like a
website than an application. Applets failed but Java didn’t (alas!); it had its
success on the server. The message is: server-side is a second chance).

Paul Graham sold an eCommerce store app, written in Lisp, to Yahoo for
$43m; it was (and is) a core Yahoo app. Why did he write it in Lisp?
“Because you can.” Web app users don’t care what it’s written in. Lisp ‘is
a weird dialect of Smalltalk’, i.e. it also has been around for a long time and
is much more productive than ordinary languages. Paul could fix a bug in
a running image while on the phone to someone reporting it;‘What bug?’

Carsten’s talk about a Dolphin Smalltalk stressed that without its excellent,
simple windows deployment, he would have been forced to go outside
Smalltalk because his customers cared about that. On the web, noone cares.

Why should the Smalltalk community be interested in Web development.
Because we can. On the client side, rivals have an unfair advantage:
Squeak looks funny. It is difficult to deploy a desktop application using
Squeak for all sorts of trivial but real reasons. On the web, this does not
matter so we can leverage the fair advantage we have. If you think web
apps are awkward to use, you should try writing them! Building web apps
is a hard problem and, as Niall’s talk illustrated, Smalltalk is good at
solving hard problems.

Avi then talked about why web apps are hard to write and how Smalltalk
can help in ways other platforms can’t, creating a possible big win for us.
A web app is
• user types URL
• that sends request to webserver (e.g. GET /foo?x=3 ...)
• server responds with an HTML doc (... <a href=”bar” ...)
• doc gets rendered in your browser (text, buttons, links, ...)
• user reads, then invokes some operation in browser (... /bar?y=4 ...)
• that produces another request
and so on. Thus web apps are stateless; each click on link is like a separate
program. This is not like a typical client-server (e.g. VW-GemStone).

This is fine for really simple things. However, any real web app must have
state. A typical eCommerce process might be
• get shipping address (state is shopping cart info)
• get billing address (state is shopping cart and billing info)
• get payment info (state: cart, billing, payment info)
• show confirmer ...
• get user acceptance ...

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 15
which builds up a lot of state. The traditional solution (many web apps use
this) is that state gets shuttled back and forth in each response via hidden
fields in forms. The billing request has the cart info and the shipping
address hidden on the page, the payment has all this and the billing info,
etc. For developers, this is nasty; you must pass this back and forth as
strings and marshal it all the time. When you do web development in this
style, you spend most of your time parsing input, then do something very
trivial, then spend much time parsing output. It’s horribly tedious and can’t
be automated because each piece of state is different.

Global session state is a commonly-used bad half-solution to the above. A
session is created to last from the start of the user’s site interaction to the
end. Thus you assign a unique session id and every request and response
includes this session id. So you just send the new data and the session id
instead of all the data (so e.g. GET /foo?sid=a32cf6d could respond with
<a href=bar?sida32cf6d).

Locally this is better but global use of the session id is very bad. Suppose
you get near to booking a flight, then use the back button to check
something, spawn a new browser, then decide, that after all you will book
the original flight. The last thing you did was look at the flight you decided
not to buy but the global state now has that linked to the session id and so
the wrong data. (Generally, global state combined with threading is always
a problem due to race conditions, etc.) So it books the wrong flight (or it
books both flights, as Georg Heeg has experienced when booking flights.)

WebObjects is written in Objective C which is Smalltalk-like. (Simplifying
slightly) it arranges that each page instance within a session has a unique
id. That instance, helped by the overall session, handles the response and
returns the id for the instance of the responded page (e.g. input
name=”page” value=”a21”>..., responds POST ...page=a21&flight525).
Thus if you backtrack, you get a fresh instance of the page with a fresh id
(e.g. ...page=c5&flight620 ...); you do not get confused. You don’t have to
marshal your state back to the user because these instances are creating
themselves on the server and can use normal accessors to communicate
state between each other. This has problems but is a lot better and is a
smalltalky way for approaching the problem; you are interacting with live
objects, not marshalling state.

WebObjects does as much as you can do in ObjectiveC, or in Java (Apple
ported it to Java when they bought Next; see also WebTapestry, the only
other web app framework Avi knows that uses some of these ideas).
However it does not address coupling, the next huge problem. This way of
writing apps means your code needs to know that page A is followed by
page B which is followed by page C ... Many web developers envision their
site as a network in which this web page points to that one, which points to
that other one, and likewise for the objects pointing at each other on the
server. That’s fine if you have a really rigid setUp but it’s a problem if you
need to rearrange things and a huge problem for evolving your system. One
of Avi’s early clients wanted a box office system where the main tasks had

16 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
many similar steps - pick show, pick seat - but in different orders - selling
a seat and exchanging seats did not start from the same place or go through
the steps in the same order. The solution to this problem is continuations.

Avi then started to build up the idea by refactoring a code example. When
programming e.g. an eCommerce web app with a shipping address page, a
billing address page, a payment details page and a confirmer, you could
allow someone creating the component for one page to pass in the next
component.

checkoutProcess
^(ShippingAddress new next:
(BillingAddress new next:
(PaymentInfo new next:
(ConfirmationPage new))))

But suppose they entered the billing address and then checked a box saying
‘use that for my shipping address too’; we don’t want to invoke the
Shipping address. Suppose you pass a block instead of an instance; then
you can add conditional behaviour, and have the state as parameter.

WOComponent
subclass: #BillingAddress
instanceVariableNames: ‘ship bill’

checkoutProcess
^ShippingAddress new next:
[:ship | BillingAddress new next:
[:bill | PaymentInfo new next:
[:pay | ConfirmationPage new
shippingAddress: ship;
billingAddress: bill;
paymentInfo: pay;
yourself]]]

This puts all the state in one place and reordering is easy but it looks odd.
Nested blocks quickly get ugly. You are passing a block that tells you how
you continue with the application (thus the name ‘continuation’). You
would prefer to put this behaviour in methods:

checkoutProcess
| pay ship bill |
pay := self call: PaymentInfo new.
ship := ShippingAddress new.
bill := self call: BillingAddress new.
self call: (ConfirmationPage new

shippingAddress: ship;
billingAddress: bill;
paymentInfo: pay;
yourself)

Avi then opened a browser and showed essentially this code in Squeak. He
opened a web browser and demoed the code running. He reordered steps
and showed how the apps behaviour changes.

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 17
bill := (self confirm: ‘Use shipping address as your
billing address’)
ifTrue: [ship]
ifFalse:
[self call:
(WAStoreAddressEditor new
addMessage: ‘Billing Address:’)]

“Users use the back button more than they go forward” (Adrian Lingard).
Avi demoed changing his mind about whether his billing and shipping
addresses were the same by using the back button. That rewinds up the
method and forks off a new version that continues. Having the back button
work as users expect is essential; users use it all the time. It works because
call: makes a copy of the context stack. Avi demoed cloning the browser
and going forward and back on the two tracks.

Q. What is returned by the call: above? It returns an address object. Avi
can use the same object for shipping and billing by just parametrising it.

Q. User creates new record for shipping, then discards (shipping = billing);
how do copying stack and database transactions interact? To ensure only
one state is right, when that is necessary, Seaside has a method isolate.
A call of self isolate done e.g. after the user has confirmed their
shopping cart, invalidates the other stacks. Avi demoed getting a ‘this page
has expired’ followed by redirection, by OKing one purchase after splitting
the browser, then trying to OK the rival fork, in a self isolate case.
You would end your transaction inside the block just before the block ends.

Q You can nest isolate calls? Yes.

Q. Forward button works? Yes; Avi discussed the various cases. In this
eCommerce demo, the forward button works before you submit and not
after, as you would expect.

Q. Space for these continuations? You configure to expire continuations for
all but the ten most recent cases and that keeps footprint down. Seaside
uses more memory than its rivals; you are trading space for ease of
development. He showed that his demo was using 10k, that a complex
session may use 100k. In 95%+ of webapps you will write, this will be a
good trade; maybe Yahoo would hesitate to use Seaside, but mostly you
just add another server (by definition, you must be being successful to have
the issue). Provided one user session is on one machine (standard anyway
for webapps), you can add servers easily.

Q. Time to copy the context? Negligible; Squeak (and VW) have primitives
that make copying and restoring very fast.

It is great that you can write the whole process in one method. You can
describe the flow of your application in a much more natural and
maintainable way. Avi first used Seaside in a box-office booking system
where the steps were the same in several process but their order varied:
ticket purchase, exchange or return, use the same steps in different orders.

18 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
It is a happy add-on that you get dynamic context across multiple requests
and this helps exception handling. You can put an error handler around a
high-level method, not around each request-response. Avi inserted an error
and demoed how the developer sees a walk-back page, hit the debug link,
saw a debugger, fixed it, proceeded. He is debugging in the same context
as the error occurred and he can still use the back button to reinvoke the
error over and over again to understand the error. This is a very Smalltalky
way of doing things and one of Smalltalk’s strengths.

Seaside lets you register objects as backtrackable so that this does not just
work for temporaries; any objects you want to be rolled back will be rolled
back (usually you use a stateholder wrapper for such objects). Session data
conflict is impossible by design. (Obviously, any multi-user app using e.g.
a shared database, must use distinct transactions, etc., and use standard
techniques to handle that.) The copying of objects for backtrack is shallow
by default but you can override it as needed.

Avi demoed this on a simple counter application: page with count and links
to increase and decrease it. Avi increased it to 5, went back to 2, then
decreased it; saw 4 because he hadn’t registered the counter for
backtracking. Avi registered it and did the same process. Now going back
to 2 and hitting decrease responds 1. He opened several windows and
played around, showing it worked as a user would expect in all cases.

Avi showed a Graydon Hoare quote to the effect that things you can
rearrange within a single method are simpler to handle. Paul Graham said
something similar about colour selection. He had a colour swatch - go to
colour page from anywhere, make colour choice, go back. This is very easy
to do with continuations, very hard without.

In Lisp, Scheme has continuations and Common Lisp does not; it is a major
at-the-VM-level choice. In Smalltalk, it is ten lines of code that you add.
Avi showed the code; stuff all the temps, program counter and etc. onto an
array. To restore, kill the current context, restore the saved one with all its
values, and swap the context’s sender, so you return to where the context
was captured (usually the self call: point). N.B. context termination does
not handle ensure: perfectly; in Seaside it is desirable not to have ensures
that go across multiple continuations (the interaction of continuation and
ensure is an unsolved problem and is the reason Common Lisp does not
have continuations, since it does have ensures).

The call: method stores the continuation and shows the component but
avoids returning normally so it instead returns when the next page invokes
the continuation. (Continuations hang onto compiled methods which hang
onto literals but nevertheless they can be serialised, so they can be sent to
another image to support the user from there if wanted.)

This is fine between pages; what about reuse within a page. Suppose a page
has two addresses (e.g. shipping and billing address, or old and new
address); we’d like to reuse two instances of that object on the page. The
problem in the old approach is that duplicates of two keys must not occur

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 19
so street must be street_1, street_2 and you’re back to marshalling
unnatural data. aRequest(‘name’->’Avi’, ‘street’->’...’, ...). Avi showd
code for generating an HTML page that demonstrated this duplication of
the text labels you are displaying as method labels in your code.

Seaside says, when you do this, don’t give the fields a name, give them a
block. The HTML is generated with the unique ids of these block objects
so when the request comes in you just marry it to its block and execute.
<form>
Name: <input name=”1”>

Street: <input name=”2”>

City: <input name=”3”>

Country: <select name=”4”>

<option value=”5”>Canada</option>
<option value=”6”>US</option>

</select>
....

Seaside as against other web app approaches reminds him of the difference
between Smalltalk and Java source code configuration management
systems: in Java - what directory is this in, what files - versus in Smalltalk
- my source is in this object. In Smalltalk, we use objects, not filenames and
other strings.

Q. Huge gap between what Smalltalk can do and what you can print on the
page, e.g. dates? You can handle this via renderContentOn: html
using a canvas-like html object, or via many specific methods e.g.
dateInputWithValue:. You could also have a special date component
to handle specific requirements and reuse it from anywhere.

Q(Andrew Black) (missed some discussion) This gives to web
development what structure programming gave to those who previously
used goto? Yes, Avi’s blog is named ‘HREF considered harmful’ for
precisely this reason. Seaside adds subroutines and parameters to what was
a goto environment, so it is an advance.

Q. Seaside and withStyle? It needs a proprietary client; part of Seaside’s
value proposition is being able to deliver web apps to standard browsers.
Like Seaside, withStyle uses CSS presentation and barebones HTML
generation. Avi stole from morphic the ability to toggle halos tweaking
your CSS so that a barebones generated HTML of links can be displayed
beautifully and edited in place (e.g. by a web designer in a commercial
app). Avi demoed several completely different looks for his demos.

Web heresies:
• It is claimed that you should use meaningful URLs. Seaside has session

data which is useless if bookmarked and revisited a year later when the
session has expired. Seaside lets you include meaningful information
from which a session could be reconstructed; Avi showed an example.

• Seaside has a different philosophy from REST. REST is about using
HTTP as HTTP was designed. Seaside is about saying we can build
higher-level abstractions.

20 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
You the developer determine the semantics of the back button. The
common semantics are roll-back the web page, and some, but not all, state.

Avi showed the other side of call: - what happens when the user clicks
the OK button.
ok
self answer: address

returns the user to the correct context.

Q. Configuration? Avi walked round the configuration pages that let him
control his apps, provide parameters, etc.

Q. Performance? He has never encountered performance problems; indeed
people have sometimes told him it was faster than other things they used.
However it has often been used in intranet or smallish internet applications
so massive scale use experience may be to come.

Q. Which dialects? The main development happens in Squeak. Michael
Bany of Cincom maintains a VW version which tracks the latest Squeak
state closely. Dolphin has an early port; it would take two weeks to port the
current state.

Q. Seaside’s licence? In Squeak, use it anywhere for anything for free. In
VW, the position is almost the same but ask him case by case.

Q. Can more be done for the Squeak website and documentation? Avi’s
priorities have to be with the framework state and customers. If anyone
wants to help, great.

Q. This conference has a teacher’s day; how should we teach the value of
Seaside? Building a UI with Seaside is at least as easy as building a desktop
UI; it might be good as a teaching exercise. (Stephane: a French group has
received a demo and was very impressed. He read the email he had
received afterwards, in French, which I translate as - “I saw Seaside and
was totally <hard to translate word - blown away? - but I gather he liked
it>”. Every time Stephane has shown Seaside to people they start to learn
Smalltalk. Avi mentioned how he was blown away by Smalltalk three years
ago when he discovered it at OOPSLA.

Stephane discussed whether we could somehow arrange a little money
generation for Seaside. There is an open question about how to fund
Seaside; support contracts or whatever.

Q. Who does it where? Switzerland and Canada are the focus points. There
is also work going on in Slovakia, Colorado, some in France and the UK,
and Avi is in Holland for the next year.

Relational Persistence in Smalltalk, Alan Knight, Cincom
Alan hopes to see us all at Smalltalk Solutions in Orlando late July 2005.

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 21
Generic Lightweight Object-Relational Protocol (GLORP) is an open-
source project that will sometime be part of an overhaul of the VW Lens.
He showed a motivating example of using GLORP: a Cincom internal
application. It is small (19 tables) with significant amount of data and an
‘interesting’ hard-to-change schema, interesting enough to give the
average DBA a heart attack. Performance is critical and some connection
is over high-latency links. Alan was of course talking about Store. He
started a GLORP session (in code so we could see what was going on)
session := GlorpSession new.
login := Login new
database: OraclePlatform new;
username: ‘system’; “Store default is BERN”
.......

Smalltalk at #MySession put: session.

and brought up an inspector of Package versions. He examined one, noting
various ‘uninstantiated’ values; GLORP uses proxying so although he
read in 25,000 package versions he did not have to wait before looking at
them. He sent it self packageYourself. The primary key was first
looked for in the cache (where it was) so did not have to run more SQL.

Requesting a versionless package runs much faster and retrieves package
names. What table does versionlessPackage map to? The same as package;
it just uses an SQL ‘distinct’ clause, an example of ‘interesting’ mapping.

MySession
readManyOf: packages
where: [:each | each versionName = 1.2]

On the screen we saw the SQL scrolling up in the Transcript whenever
database access was invoked.

Q. Multiple and long-running transactions? GLORP will start a transaction
if it needs one and one is not already running, so the user can start one and
manage it (long transaction) or do nothing and GLORP will create and
commit as needed.

You can optimise the query, e.g.
“when running query, also get the definition”

methodMapping query
alsoFetch: [:each | each definition];
expectedRows: 1000; “allocates suitable size caches”

In Store, “Package” means one version of a Package. “Class” means
ClassDefinition (no equivalent of Envy class version letting you browse
methods held just by that class version). MethodDefinition may be in many
tables. Naive table mapping does not connect to straightforward Smalltalk.
Thus Alan introduced additional entities such as StoreVersionlessPackage,
StoreMethodInPackage, etc., that let you talk about things in standard
Smalltalk ways and write queries more easily.

Alan then showed a UI “that shows clearly why Vassili works on tools and
not me”. Alan finds John Brant’s replication facility slow so wrote a faster

22 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
one using his tools. Example: ‘In my local database, find all top-level (i.e.
not contained in bundle that is also found) pundles that were published in
last 30 days, whose names match <string>’. He uses this to keep pundles
in his local Store in sync with the on-site Store, etc. (The UI looked quite
usable despite not having Vassili-ish quality and after seeing more of it in
a later demo, I plan to use it in my Camp Smalltalk project.)

Alan demoed a browser he has created that can load code from Store into
VisualAge. He used the Refactoring Browser since it has a lot of cross-
dialect code (but enough dialect-specific code to give Alan work), thus the
tool runs in VW and VA; he demoed in VA to make clear what it was doing.
This tool runs threaded in the background and is fast. He still has to
complete making it do writing of code back to Store (but otherwise, it
looked pretty good to me and a useful step towards making Store and Envy
work nicely together; Alan talked me through how it worked off-line).

Cincom did Alan the great favour of letting him test all the above in an
environment with a lot of database and network hiccoughs :-). Writing uses
Oracle ArrayBinding so 1000 rows can be written as a single round trip.
Alan showed some relevant weblinks: I noted
• www.glorp.org, glorp.sorceforge.net is just for bug list and mailing list
• www.agiledata.com (for Scott Ambler’s Object Primer article)
He also mentioned relevant other work: Avi Bryant’s ROE, etc.

People tend to come from either the OO or the Relational camp and wish
to build systems that hide the other world completely. Alan thinks it better
to build systems that are aware of both.

Q(Niall) Can the community use this? Replicator shipped in 7.2.1,
Browsing not yet there (just finished) but published in Store except latest

Q. Other ports status? Squeak port being used, Dolphin a little old.

Smalltalk Web Framework:, a comparison of Aida/Web and Seaside,
Janko Misvek, Eranova
Janko build Aida but Avi is in the audience so should keep him honest :-).

A web application server provides web pages built dynamically on-the-fly.
Web pages are not like GUI applications. The client is thin, just a web
browser. Seaside and Aida/Web are two Smalltalk web frameworks.
Swazoo is a Camp Smalltalk project, a web server plugin structure ported
to Squeak, VW and Dolphin.

You can build web pages in two ways:
• embed tags into HTML: Cincom Web Toolkit, jsp, asp, php.

WebToolkit embeds <% smalltalk code that returns html %> tags in
HTML pages. It is simple for web designers who don’t like to program
but the functional logic gets lost inside the presentation logic. The mix
of two languages creates hard-to-maintain spaghetti code.

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 23
• use programs to build pages: Aida/Web and Seaside, Struts, Java. This
needs no html, separates presentation from model and aids component-
isation and reusability. Web designers dislike having to learn
programming and having to move design into code. However graphic
design can be separated from HTML content using CSS stylesheets.

element := WebElement new.
element table width: 500 ...
is Aida,
self contentsOn: html.
html form: ...
is Seaside.

An object system is a web of objects connected with object references. A
web system is a web of pages connected with URL links. Janko built Aida
to use this parallelism. Every object should present itself as a web page.
Object references should map automatically to web pages. Aida supports
get, post, put, etc. (www.xfront.com/Rest-Web-Services.html), and
answers requests by presenting the object as a resource. Aida uses MVC to
separate WebApp from domain object using an the observer pattern. Every
domain object has its presentation counterpart. Aida also provides support
services for mapping URLs, security, etc., and for presentation. In
operation, the WebServer sends a printWebPage request to the object
which then communicates to the WebPage and thence to the HTML Page.

In Seaside, continuations let you define control-flow very easily. There is
a session-like process/thread (like Process in Smalltalk). Components have
UI state and logic, and can call other components. Janko showed examples
of Seaside and Aida code doing the same thing (a URL counter). He noted
that the Seaside code was shorter; Aida had to separate logic and
presentation, whereas in Seaside:
WACounter renderContentOn: html.
html form: html heading: count.
html
submitButtonWithAction: [self increment]
text: ‘++’.

html space.
html
submitButtonWithAction: [self decrease]
text: ‘--’.

and adding control flow, e.g.
html
submitButtonWithAction:
[(self confirm: ‘Do you want to go negative?’)
ifTrue: [self decrease]]

text: ‘--’.

is easier in Seaside.

Janko finds Seaside very good at supporting the back button, locating
control flow in one place but it seems more procedural than OO in
programming style, the URLs are not REST-like and cross-linking pages is
difficult. Aida has persistent URL for every domain object and automatic

24 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
cross-linking of pages and is REST-oriented. However it has GOTO like
programming for more complex apps and does not fully support the back
button. See www.eranova.si/aida for more information.

Cryptography for Smalltalkers, Martin Kobetic, Cincom
Cryptography aims to achieve confidentiality by encryption, integrity by
message authentication codes (MAC) and authentication by signatures.
Martin’s talk was on encryption.

Since encryption algorithms are hard to develop, they tend to be made
public, with their secret part extracted to a key. Encryption approaches:
• symmetric secret key cipher: stream cyphers or block cyphers. These

are used for bulk data encryption.
• asymmetric (public) key cipher
• one-time pad
Stream cyphers (Pike, A5, ...) generate a stream of random digits, used to
encrypt with xor. Martin demoed by encrypting his slide with a key cypher.
Never reuse the key of a key cypher, since
(a xor k) xor (b xor k) = a xor b

i.e. the key k can been eliminated by this simple operation.
key:= ‘secret key’ asByteArray
“use bytes not strings, to avoid encoding issues”

alice := ARC4 key: key ...
msg := ‘...’ asBtyeEncoding.... “msg is btye array”
alice encrypt: msg

A block cypher (Blowfish, DES, ...) is a fixed transformation applied to
blocks (64bits, 128 bits) of the data.
key:= ‘secret8key’ asByteArray.
alice := DES5 key: key.
alice encrypt: msg “must be whole number of blocks long”

You usually pad with the remainder number (block size 8, message 15
chars long, pad with ‘1’). Block cypher is a fixed transformation so it does
not well-encrypt higher-level structure. Martin demonstrated this by
encoding his slides with a small block size; they were still readable.

Block cyphers therefore use a chaining block, each block encrypt being
xored with the previous plain-text. The first block needs an initialisation
vector, a non-secret but unique and random block-size value, and again you
should not reuse it.
key:= ‘secret8key’ asByteArray.
alice := CypherBlockChaining on DES new iv: nonce b8 ...
OR
alice := DES newCBC_B8 “helper method”

Block cyphers can also use output feedback mode or its variant counter
mode instead of chaining. Counter mode uses the counter as the chain value
which means you do not have to generate your encrypt in sequence.

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 25
Straightforward DES with block size 8 can be broken today with a bunch
of PCs so you can use triple DES, encrypt with first key, decrypt with
second key, recrypt with third key.

Martin showed code fragments for doing all of these and there are helper
creation methods such as
des3 := DES new3EDE_CBC.

DES is being phased out; it is not powerful enough. A competition to
replace it had 15 submissions, 5 finalists and one winner, Rinjael (ref
Anderson, Security Engineering, Ferguson Schneider: Practical
Cryptography).

Q (Georg Heeg): in WWII, everything was enciphered and everything was
read. Is this still the case today? Martin takes the economic view. No
practical cypher is unbreakable but it can be made too expensive and/or too
slow. Experts in the field release cyphers with duration estimates: “I think
this will be good for 25 years”. How much is your secret worth? How much
effort do you expect an attacker to devote to it?

Q. Most decryption arises from user error. People encrypt XML which
often starts with a known tag, just as Enigma was helped by WWII
messages always starting ‘Oberst...’ and so on.

Smalltalk has a chance to shine here. People complain most security
problems arise from complexity and misunderstanding. Smalltalk is good
at handling complexity.

TypeWise, Ernest Micklei, PhilemonWorks
Ernest showed a slide created in typewise that his wife thought would
explain typewise. At the end of the talk we will hopefully understand it.

Simple things should use a simple UI. Today, the web is too complex for
some tasks. User interfaces are moving from keyboard-driven to mouse-
driven. His aim is to have character-based internet widgets.

TypeWise was developed in VA and is deployed with Smalltalk MT. Its
architecture has a terminal client with HttpRequestor, and an HttpServlet
with client proxy-talking to the ApplicationModel. The client executable
renders and interacts with character-based widgets. The server handles
messages from the client and keeps the application’s view state in sync
with the client.

Ernest showed some attractive web screens with various widgets. He
edited these, changing colour, appearance, etc. Standard internet browsers
expect you to send an HTTP request returning an entire page. Ernest
instead exchanges Smalltalk messages and does widget-level updating. He
has MessageSend, MessageSequence and IndexedMessageSend for
exchanging messages.

To develop an application, you create a TerminalApplicationModel,

26 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
TerminalScreen and TerminalApplicationModelServlet, then start the
client using the server URL. You locate things on the Grid (row and
column, not individual pixel locations). Use an EventTrigger to create
event to action connections. Ernest uses stylesheets to simplify
development. He has a helper class to build screens.

Ernest’s whole talk was itself running in TypeWise. He now reached a slide
listing demos and selected them to demo
• web-based class browser built with TypeWise
• pilot-training exam application
• Google query plugin for adding to web apps as a menu item
Q. Scrolling? Not using the mouse as mouseless operation is a key aim.

TypeWise can be used for monitors (e.g. Stock Exchange or Industrial
Processes), for administration tools and for reservation systems. It will
hindered uptake that it is not a sexy UI (of course, it is retro-sexy :-)), nor
internet-Browser-based (must download and install typewise), nor a
standard protocol, but Ernest has clients. TypeWise is free for non-
commercial use, has a developer licence for commercial use, and is also
available for connection to Java (sorry :-)). See http://www.typewise.org.

Q. Run on PDA? Interesting idea; the talk yesterday has started him
thinking about that.

Squeak Etoys, Yoshiki Ohshima
Kedama is a system that lets you describe massively parallel complex
objects. It was inspired by StarLogo (MIT labs) and StarSqueak (John
Maloney’s Squeak version of StarLogo). Simple rules let you show
complex behaviour. Thus children can learn.

The system has a world (where everything is), patches (environments
represented as fields of values) and objects. He created a block containing
a gold dot and gave the dot behaviour. Then he added more: soon we had a
hundred, then a thousand, then the thousand dots bouncing all over the
field. He changed the rule controlling them to show the effect on the
aggregations. He also had a large gold block showing the behaviour, in
effect providing a zoom-in view of one.

Then he changed the values and colours (quick to do, drag-dropping mini-
windows and editing them) and instead of a gas-like assembly we saw an
elaborately hued expanding iris. He put the gold dots back and the iris
gradually swallowed them along a cross-pattern of gradient.

Next he showed practical examples of using this in teaching:
• pheromone example: the dots were ants finding food from their nest.

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 27
• gas example: a PV = nRT thermodynamic formula was illustrated,
computing the gas values from the actual behaviour of the confined
dots. Moving the box dimensions changed the values and children
could see why. Changing the number of dots indicated the statistical
nature of the law.

• Compute the value of pi by giving dots behaviour that converges on it.
Next he took a picture (of a rubber duck in grass) and converted each pixel
to an active dot.

In future he will unify turtle scripts and world scripts. He wants to move
from atoms to more general space descriptions, suitable for describing
circuits, astronomy, biological systems, the internet, etc.) Patches need to
be extended or replaced.

He showed a sensor designed to measure dryness and output a sound.
Computers have sound inputs so it took him ten seconds to build a
graphical interface (the fact that his computer text was in Japanese
characters underlined the value of the graphics).

Squeak in Japan has a lot of take-up, especially since a TV show featured
it. The squeak-ja mailing list has 380 members. Japanese employees of HP
are active in Squeak. There is also Learning project (the Alan-K project).
A children’s book on Squeak sold 5000 copies.

The audience thanked Yoshiki for his Squeak multi-nationalisation work.

Selling Smalltalk
Commercial case studies presented in the Business Day are in the
applications and experience reports section; here I put talks that were about
how to work commercially in Smalltalk.

Marketing Smalltalk - Business and Community Marketing, Monika
Laurent, Cincom
It is something of a challenge for a non-Smalltalker to present marketing
ideas to a group of Smalltalkers, not known enthusiasts of how things are
marketed. She quoted, “IT staffers are easy as long as your product is great.
Fluff won’t work. In fact they will hate you for it, and never forget. Think
religion, think crusades. These people love and hate.”

Monika never wrote a line of Smalltalk (or of Java; she once wrote Cobol).
Monika’s talk was not an academic marketing talk, nor a historical view of
Smalltalk, nor a description of how Cincom, or anyone else, should market.
It was about how an outsider, but enthusiastic about Smalltalk, sees things,
and about how to talk to other outsiders.

The business audience (those whose job is to manage IT towards profit)
and the Smalltalk community audience do not much overlap. (Senior
Smalltalk software engineers are the most obvious potential members of
both groups.) These groups have different concerns. The business audience
have a business or (not-so-)technical background. Personal success and

28 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
company profit are their concerns but personal and professional interests
can differ significantly. The community consists of technical people who
value more their reputation and research; their personal and professional
goals overlap more. The community has high personal commitment and
are short in budget. Business people are more ‘down to earth’ in several
senses and rely on ‘common sense’; they have budgets but the budgets are
not their own budget. Monika sees the community as more creative and
also more emotional.

Q(Niall) Emotional? What, us? :-) Smalltalkers care. Business people do
their job during the day but it is very far from being their life.

Which marketing channels address the business audience: large trade
shows (CeBIT) and Trade conferences/seminars are much patronised by
business, little by the community. Direct marketing (mailing, emailing,
telemarketing) work for business people, but only email works for the
community. Advertising and the press work for business, only the latter for
the community who are very contemptuous of advertising puff and always
wish to test claims hands-on. IRC and such-like communication channels
are useless for business, popular in the community.

Message contents also differ. Business people want to hear about ROI,
about real-life commercial applications. They are very ‘practical’, un-
interested in research whose connection to commercial use is not obvious.
They like much more background, more explanation on benefit. She sees
them as needing more neutral language, unlike the spare but ‘leading edge,
appeal to ego’ presentations for IT people. A business audience likes a
formal, serious, commercial style, whereas technical people often prefer
the casual, sophisticated, creative, funny, game-oriented style.

Presentations that say how everything was better X years ago, or that are
arrogant (we are the clever ones), do not succeed in business, and nor does
simple neglect of marketing. We must focus on the future and on success
in business. “Think not what Smalltalk can do for you but what you can do
for Smalltalk”. We need to exchange ideas on this.
• Companies that use Smalltalk need to talk to the community about

what they need. Tell universities that educating fresh Smalltalkers is
worthwhile.

• Smalltalkers must be aware of business concerns and willing to
research areas of business need.

Monika hopes she will see us at the business track at ESUG 2005. There is
also a Cincom VW Smalltalk user’s conference (Frankfurt 7-9 Dec 2004).

Q. Do CEOs of Smalltalk companies have particular characteristics (e.g.
more technical)? In small companies, perhaps. The head of Cincom has a
sales background.

Q. Is the business versus technical split just the split of standard versus
early adopters; Smalltalk is small so we only have early adopters whereas
other technical activities have their ‘only a job people’? Georg replied by

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 29
asking for a show of hands and got quite a few people who saw themselves
as on the ‘business’ side, and more who saw themselves as on both sides.

Q. Could an actual selling point be made that Smalltalk bridges personal
and professional interests: ‘love your work.’

Lessons learned from starting a company with a Smalltalk product,
Christian Haider, smalltalkedVisuals
Christian built a product for himself, found a client who wanted it so
developed it further, then founded a company to market it. See his talk last
year for a detailed description of the technical issues and some background.

He started with a 3-month contract to do chart programs for a magazine that
had someone spending all day every day drawing stock market charts.
They told Christian that three earlier vendors had discussed the problem
but never come back with a solution. Christian did the work from time-to-
time over a year. The smallness of the charts and the need for good graphics
and printing were the main issues he had to solve.

His first client had done a market survey to find a product and failed before
hiring him so Christian thought, perhaps there is a market, so he created a
help website. For a year, his first client (Die Telebourse) used it and then a
stock market crash killed them. Their parent company (Handlesblatt)
wanted it so he had a half-year contract (4.5 man-months actual work) for
them. His second contract (with Seuddeutche Zeitung) was a half-year but
took a long time to arrive, longer than he had expected.

Meanwhile, his help website was helping his existing customers but
making no new ones so he created a marketing website.

He showed some charts, mentioning that support for logarithmic scales had
to be added when the stock market crashed :-). The difficulty is not to draw
any one chart but to produce charts that will print professionally and be
further editable. Each customer had new requirements, tables, context-
specific name abbreviations, etc. Layout is controlled in Smalltalk which
means he can add new rules very fast but the non-Smalltalk-using
customers cannot. He got client data software (DLL and COM with no
documentation) and analysed it to connect data to charts more effectively.
The clients had very strong ideas about layout. (That was the market
opportunity; layout that meets their exacting wishes.)

Q. Logarithmic timescale, like what Dan demoed? yes, I’d like to offer
that; it would be a unique feature.

Christian then spoke about what he had learned.

It is important to have a unique selling proposition. That was easy for
Christian, automating chart creation was already recognised as a value in
his first client; letting the client wait as late as possible (get latest stock
market data) and then quickly get chart for printing deadline. Consistency
was another value (previously, each graphics worker had their own style

30 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
and you could track the changes from day to day during the week). There
is much specialised knowledge in creating small charts that look good; it
was hard for the client to hire the appropriate people because the job is very
boring. His product replaced a cluncky loop of editors sending requests to
graphics designers and then asking for corrections.

Why did he create a company, not just trade as Christian Haider? An
independent legal entity gives him some separation. It is much easier to
involve partners. The main reason was because the customers much prefer
not to deal with natural persons.

Smalltalk has no role except that without it he would never have built the
original product and that he fixes things quickly (as his customers have
remarked). It also proved useful for exploring external interfaces on the fly.
He was at the customer site with one afternoon to get his code working with
the ‘every twenty minutes’ stock market interface for which he had no
knowledge, no help and no prior warning (manager said, ‘It would be nice
if....’) but by 23:00 he knew how it worked and at the demo next day it
looked good.

Being a company is about profitability. It is also about interacting with
people. It needs a transparent organisation; if someone calls when he is
away, where is the information. You have to deal with bureaucracy: the
government, maybe an accountant or tax lawyer. You need to specify
people’s roles.

You need to be professional. Test. Deliver. Track bugs. Track promised
features. Track your time.

You need to find customers. Christian’s idea of marketing was word of
mouth; happy customers will tell others. That did not work. This industry
has no gatherings, conferences or whatever. They just buy each others
papers. He realised that the people he had to call were all listed in the
‘impressum’ of the paper. Then he needed to stay talking to the correct
people. He would call the editor and say ‘I have a nice tool for charts’ and
the editor would say, “I’ll switch you to the graphics people”, but these are
the people he is planning to replace.

He found the website did not communicate, they just did not get the value,
whereas a demo communicated immediately. If he managed to present
SmallCharts at a customer site, the battle was usually won. The graphics
people always use Macs but the data provider always uses PCs. VW will
run on either but demoing on one while getting data from another can be
interesting.

Pricing was hard; he had no idea what model to use let alone what amount
to charge. At first he thought: charge 10% of development cost and find 20
customers. Then he realised he would get no money when he had exhausted
the market. He has ended with a renting but, for all that Microsoft does the
same, the customers start by wanting to buy, not rent. Next he had to decide
how much to charge. He has no competitors to help him set prices and the

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 31
customers’ graphics department is a general expense amortised over many
things so they often have no idea either.

His mistakes were
• Not wanting to do marketing: however, he realised noone else could

explain the value proposition convincingly in depth
• Underestimating development time badly
• Underestimated customer decision process time delay (they take 6

months to call back)
He also advised choosing your partners with care. Someone you have
worked with but not gone to school with may be someone you know less
than you think. There will be rough times and you need mutual
understanding to carry you through arguments

Q. Fonts? usually from customer, not free.

Q. Enduring the waiting? Everyone told him that companies take 3 years
to become profitable so he had a timescale to help him through the trough

Applications and Experience Reports: Commercial and Technical
This year ESUG had a business day, in which some more commercially-
oriented experience reports were presented, along with the usual technical
reports on commercial systems. I have arranged the talks in this section
very roughly to have the more commercially-focused talks earlier in this
section and the more technically-focused ones later, but as all talks tended
to cover both aspects, the difference is not huge.

Hans-Dieter Brenner, Joseph Springer, Novatec
Novatec was founded in 1996 and does project reengineering in C++, Java
and Smalltalk; Smalltalk is 40% of their business. Hans described a project
for a customer in Stuttgart reengineering their public sector system to use
ObjectStudio. There are 9 regions, 35 counties and 111 townships in
Wurtemberg. The customer implements software for the regions who then
distribute it to the smaller entities for client use. The customer manages
various local taxes and charges (e.g. pre-school groups, dog licences, etc.).
They also manage foreign residents. The previous system was an MVS-
CICS, DB2 system on 3270. The new client-server system runs on PC
clients. The client is built with ObjectStudio and PVCS version
management. (The server still uses COBOL; legacy software and staff.)

The ObjectStudio framework builds the application from the domain
model, providing database connections, forms, etc. A layered architecture
also makes it easy to respond to future requests for changes to UI, to UI
style or platform, to domain objects, to database layout or platform, etc.
The customer’s programmers had to learn the framework, a necessary
discipline that they did not immediately acquire. One programmer worked
the whole Easter weekend to do by hand something he could do quickly
with the framework. On Tuesday morning, Hans showed him how to
discard 80% of the code he had written. He used the framework after that.

32 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
Users map new support requirements to object models of transient and
persistent objects, thence to a fresh support systems. To people who were
accustomed to weaving COBOL and SQL, this was a lot simpler. The
framework provides audit tracing (the state of each object over time) and
all the other cross-cutting aspects that previously complicated their code
(or were ignored). It also connects to a range of office tools (Winword,
Excel, WordPerfect, AmiPro, etc.) that various offices are accustomed to
use for related tasks.

Software roll-out was an important issue. InstallShield distributed the
image to the server, thence all over the region. Redistribution of 10Mb
images to fix a bug was not desired. Images record their basic version and
patch version, and patches are downloaded to clients routinely, checked
whenever they access the server.

One issue was making ObjectStudio talk to the financial administration
system SAP. They had the choice of driving the SAP’s API via OLE or
RPC. They found problems with OLE so used RPC. This was done in three
steps: generate remote function calls, use Structure Builder (a tool they
built) to parse structure of generated C files, bind calls.

Another issue was communicating with the central Berlin registry. This
was done via XML. ObjectStudio has an XML parser to output their data
to a Tomcat Java servlet that talks to the Berlin registry. They plan to
replace this with a VisualWorks servlet.

Q.(Andreas) Here we have a very conservative customer switching to
Smalltalk, not Java, and making the decision not recently but in 2001 when
Java was still flavour of the month; how come? We showed a prototype to
the customer showing how rapidly we could build applications.

Q. SAP interface: was it straightforward? Now we have the know-how, it
is easy. The customer develops a new Business API and the Structure
Builder takes half a day to integrate it. (Maybe useful to port this to VW.)

Q(Herge) Frameworks make it easy to respond to requests for generic
changes? Yes. However requirements are not really specified. You need to
implement something, show it to the customer and get their reaction.
Where a framework really scores is in letting you show the customer
something quickly.

Q. Ever been asked, “who will maintain this if your customer dies?” Yes,
they heard this argument several times, but the customer has experienced
over the last 3-4 years hiring people, training them in Smalltalk and seeing
them becoming productive within 2-3 months so they are not concerned
now. They also develop with Java and the ANT scripts they have to build
with Java are very complicated and you need a good programmer, so
sourcing people is hard there to.

Georg Heeg: this talk, and its level, was very different from that we are
used to; this is what business people want. ObjectStudio people are more

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 33
business focused. Georg spent two days with some OS people. On the first
day, he explained the differences between OS and VW and they did not get
it. On the second day, he showed them and they got it. “The second day was
very useful.” We can learn from this.

The Value of Smalltalk: valuing and risk-management in VisualWorks
and GemStone, Niall Ross, eXtremeMetaProgrammers, Colin Lewis,
JPMorgan Chase
I find it hard to explain things I have learned by experience instead of by
being taught them. Noone ever told me to use Smalltalk because One
day, in the early nineties, my quondam manager told me I’d be working on
a project in some new language “... Smarttalk - er, no I mean Smalltalk, I
think ...” and I said “O.K.; I don’t mind learning another language.” (This
way of discovering Smalltalk is not uncommon. Avi went to OOPSLA in
2001 with a paper on Java, but rashly walked into the Camp Smalltalk
room to see what was going on there; in a sense, he never left. :-)

A few years later the scene repeated itself, with my then manager telling
me that now everything would be written in Java. The manager was more
keen this time, but I was less so; less keen for myself, but also I didn’t think
it would do the company much good. But how to explain why?

Over the years since, I’ve had several attempts at explaining to various
audiences why it is not in their interests (or mine :-) to ignore Smalltalk.
One attempt, aimed at students, is at the very end of my ESUG 2002 report
(see www.whysmalltalk.com Events and Trip Reports page). More often
the attempt was aimed at managers. Very often, in the years of the Java
wave, I had but few and hard-won successes battling against fashion. This
talk is the latest attempt, using my current work as example.

Kapital is a key JPMorgan Chase’ system. I’ll give just enough background
on the system and its domain to make the rest of the talk comprehensible,
then describe a few examples of how its reliance on VisualWorks and
GemStone delivers business value. Kapital values and risk-manages a wide
range of complex financial products. Some of these are commoditised
vanilla trades, where the profit margins are made by handling large
volumes effectively. Others are new really complex products: here the
profit margin is in being the first to be able to handle them in any serious
volume. In both cases, the key point is that you dare not sell or buy what
you cannot price, and you dare not hold what you cannot risk-manage.
Hence the capacity of your system for doing this determines your volume.
The speed with which you can extend it determines how soon you can
handle new products. And the interaction between the two determines how
quickly you can expand the volume of popular novel products.

In the early nineties, when the idea of a system like Kapital was first
mooted, much of this work was done by traders on spreadsheets. Kapital’s
goal was, “The ease of a spreadsheet with the scalability of a system.” This
was a hard problem to solve, but very worth solving.

Kapital has more than 500 end-users in the major financial centres, and is

34 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
supported by a multi-site team of 60+, half of whom are Smalltalk
developers. It is used in three modes. Overnight, massive batch runs value
all the traders’ books against an immense range of conditions. This creates
a map of possible futures: the books’ actual values, their values in a range
of possible future states, their exposures to a range of possible risks. The
next day, the businesses use Kapital to manage their books interactively,
valuing fresh trades, exploring possibilities and hedging against risks. The
information computed the previous night means that Kapital can tell them
much more that just what it can calculate for them in a trade’s time-
window. During the weekend, we do housekeeping. Various runs clean up
the data, archive audit records, verify various conditions, and do sanity
checks to ensure the framework models are holding up.

Various features of Smalltalk make it all possible. Firstly, forget rapid
delivery, cost-effective delivery and all those nice-to-have’s and think
simply about actually delivering anything at all. Kapital solves a hard
problem (if it were easier, we’d have more rivals). One hard problem aspect
among many is that Kapital’s domain (and also our understanding of it)
changes, so it needs dynamic domain models.

Kapital’s infrastructure meta-model of graphs, closures and references
ensures that financial developers don’t have to worry about persistence.
Complex models of financial products get persisted, and their data integrity
and audit trail assured. (This meta-model has behaviour in both VW and
GemStone.) Above it, a financial domain meta-model of markets, trades,
cash streams, etc., lets new financial products be created rapidly. In this
model, all objects can “mark to market” (i.e. value) themselves, all objects
can walk their graph to explain their values against variations in time-
period, pricing, etc., etc. (This domain meta-model has behaviour in VW
only, GemStone acting as a virtual memory extension at this level.) It took
1.5 years to get these meta-models right. It was so worth it. “New financial
developers find the ease of the persistence framework unbelievable.”

The bottom line is that meta-modelling is so easy in Smalltalk - that you
can deliver something that makes money before your project runs out of
money. We know of a bank who attempted to replicate the system. They
had legitimate full access to Kapital’s codebase and employed skilled staff
some of whom knew Kapital. Their only problem: as this work was being
done at the end of the nineties instead of in the early-mid nineties, they ‘of
course’ used Java and a relational database instead of VisualWorks and
GemStone. The project ran for about the same length of time as Kapital’s
initial start-up, burned all its money and ended; nothing was delivered.

Meta-modelling is easier in Smalltalk because Smalltalk exposes its own
meta-model: everything is an object; there are few reserved words.
Kapital’s meta-models were developed by trial and error, mixing and
matching what was done by Smalltalk classes and what by ‘meta’ objects.
Kapital uses the standard Smalltalk meta-modelling approach: a
classInstVar ‘meta’ holds data qualifying what Kapital’s model-layer
classes mean and how they relate. Much code walks graphs of these
objects, guided by the meta-data. As Kapital developed, fine-grained

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 35
refactoring between what ordinary Smalltalk did and what the meta-system
did was essential to getting the latter right. Specific methods could be
integrated with generic graph-walking methods because there were no
type-system obstacles to refactoring between code and meta-code1. For the
same reasons, it was easy to extend VW’s and GemStone’s coding tools to
embrace the meta-system. (As a minor example, I showed a hierarchy
browser whose coding tool also handled slot definitions: meta-data
qualifying the behaviour of instVars for model-layer classes.)

Once the system was up and running, a second value of Smalltalk came
into play: rapid delivery. The infamous DarkPlace Dogytalk letter,
GemStone’s Brokat phase and all the usual managerial pressures on an
unfashionable language had the same effect in JPMorgan Chase as
elsewhere. The company maintains ‘buy’ lists and ‘sell’ lists for
technology. After the letter, VisualWorks went on the ‘sell’ list and stayed
there for years. GemStone went on it during the Brokat troubles and was
not officially removed from it until last year. Kapital survived this because
we can mould it to do what our users want in volumes they cannot handle
elsewhere. In frequent prototype demos, Smalltalk lets us change things in
front of users as we demo, letting them see what they want and (as
important) what they don’t want. A single new product could be described
in a spreadsheet (often is, when it begins as a gleam in a trader’s eye) but
you quickly hit the volume and complexity wall using spreadsheets.

I described one example. Not so long ago, a new financial product
appeared and was very popular in the markets. (If you work in the business,
you may be able to guess what it was. If you don’t, its name would mean
nothing to you. I’m not allowed to say what it was.) Every client of every
investment bank asked for quotes for it. For a key period of high market
activity (I’m not authorised to say how long), only JPMorgan Chase quoted
new business for them. JPMC gained the business, the premium for being
the only one in that market, and (also a key commercial value) the
connection to additional clients. We do not know, but have reason to
believe, that competitors used lots of extra spreadsheets and staff to enter
the market when in time they did. By contrast, the new product added
minimal performance and maintenance costs to Kapital, which thus kept
lower overheads and freedom of action (opportunity cost).

Incidents like the above are obvious to Kapital’s users. To those who
support it, another key Smalltalk value is scalability. Kapital has a
distribution architecture of Client, Agent and Resource Manager images.
Agents do calculations. Clients task Agents and persist their results.
Resource Managers control what images are started where. Detailed
configuration of how clients group tasks for agents is supported and has
major performance effects. Images communicate by database and by
Distributed Smalltalk. The vendor said we stressed DST more than anyone
else (and fed our fixes back into the product). As well driving a large server
farm, this architecture lets us steal cycles from desktop PCs all night to help
the batch run complete. This was started a few years ago as a nice-to-have;
as volume kept shooting skywards, it became essential within 3 months.

1. See Niall Ross’ talk at ESUG99 for a detailed analysis of this issue.

36 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
Scalability is a key driver for Kapital and visibility is key for scalability:
you see true bottlenecks only in the production state. Because of this,
unlike typical systems of this size (10,000+ application classes and not-a-
few changes in base classes), Kapital is not stripped at delivery. A release
image has the same codebase across all sites and businesses; production
images have development tools hidden within them. This combination of a
common code base with Smalltalk’s dynamic features lets us study bottle-
necks in situ. Example: recently, we noticed what was called ‘the Friday
slowdown’. This was diagnosed as the week’s-worth of new object oops
committed to GemStone (before weekend house-cleaning reduced them)
passing the SmallInteger/LargeInteger boundary, thus altering the hashing
method used by a key dictionary in a tight loop, so leading to extra message
sends in performance-critical code. Everyone remarked afterwards that, “I
would never have guessed that.” Being able to see, interrupt and
experiment dynamically in Smalltalk was key to this diagnosis.

That was just one example of how Kapital has overcome one performance
threshold after another as it grew. Kapital on-boarded Credit derivatives, an
entire new business area, significantly faster than our competitors. It
switched from shared memory processor technology to blade technology in
six months (an example of the fact that Smalltalk is also easy to move).

With complex meta-models to maintain, and a rapidly evolving market,
another Smalltalk value, reengineering, is vital to keeping us alive. Fine-
grained access is key to reengineering; you can get at so much in VW and
GemStone. I described one example in some detail. Concurrent systems
need canonical (i.e. unique) objects. Kapital databases store the unique
roots of certain graphs of financial domain objects in a performant symbol-
keyed cache, each image loading what it needs. In this cache are the keys
(‘descriptors’) of financial time-series objects (‘curves’); Kapital started
with 200, and now uses 70,000 (indicative of how its volume has grown).

Retrieving 70,000 descriptors began to slow an important UI operation. At
the same time, we had noticed (as have other GemStone users) that saving
many copies of the same date bloats databases, and it is quite possible to
synchronise image dates and unique database dates lazily, so performantly;
this had been implemented. Re-using this pattern, we reengineered to use
date-style lazy synchronisation for curve descriptors. No sooner was this
done than our pesky mathematicians revealed that, as it was slow and
costly to gather data for certain curves, they had worked out a new theory
that derived all such curves from a few base curves. Now, Kapital would
create new curves on the fly, so needed to generate curve keys on the fly.
Deep within a transaction, after all locks were obtained, all transaction state
set, we might suddenly discover that we were doing a write, instead of (real
or lazy-synchronise) read; Oh joy !! :-) However, you can get at things in
Smalltalk; the person who did the original synchronised dates work guided
us to a pattern for lazy synchronise, read or write.

When code evolves, data must evolve to keep pace. Kapital’s schema keeps
evolving to keep pace with the market. In Kapital, the persistence
framework is integrated with the mutation (data migration) framework.

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 37
Data is lazily mutated as it is loaded into an image, thus migrated in the
database if saved. For some changes, one must write upgrade methods for
classes, but thanks to the framework an amazing amount happens
automatically. For performance, recent and important data is migrated on
each release for all production databases; other data is lazily mutated if
loaded. Thus data upgrade on release takes less time. More importantly,
developers can run their latest codebase against copies of production
databases without having to upgrade everything first. When you want to
test your code and find bugs early, that is very valuable.

(Technical aside: a corollary of this is that in GemStone, selected classes -
‘backport classes’ - push method changes to their previous versions to
avoid having to migrate. Only structural changes to such classes compel us
to migrate their instances. There is debate in Kapital whether to continue
with this or to move to migrating on behavioural as well as structural
changes. Recall that we put no domain behaviour in GemStone, only
framework behaviour. That is both why we can get away with this approach
and the motive for it - to keep as much migration behaviour as possible in
a single place, VisualWorks, for simplicity.)

Having given a few examples of how Smalltalk helped us, I ended by
listing a few of the things we would like to do better. The original
framework design forced cloning of the entire collection class hierarchy to
support ‘meta’-enabled collections in domain graphs. We would really like
to eliminate these. We also want to eliminate dead code. Until recently,
loopholes in our tools encouraged people to neglect deleting unused
classes; there is ongoing work on static and dynamic dead code detection
and deletion. There is also ongoing work to remove unneeded objects in
our databases (‘dark matter’). GemStone’s object table can reach 2 Gig,
occupying the whole shared cache (by copying the data we need to new
databases, not by hunting unneeded data in old databases). We also want to
enforce good coding patterns: we have superb code and not-so-superb
code. More info on Kapital can be found at:
• https://secure.cwheroes.org/briefingroom_2004/pdf_frame/press.asp?id=4909
• https://secure.cwheroes.org/briefingroom_2004/pdf_frame/index.asp?id=4909

RUT-K: Fast large-scale train scheduling with Smalltalk, Marion
Jurish and Joachim Geidel
Marion explained that in Germany 40,000 passenger and freight trains
must fit on 65,000km of track, controlled by 8,500 crossings and switches.
At Frankfurt there are 90 trains every hour; 400 users in 7 offices must
manage them. She saw it as like solving a large puzzle. Exact construction
of a train’s path requires detailed knowledge down to track level and detail
running time data. Timetabling is done by a team, so the system requires
full multi-user capability and must show all data. You also have to explore
timetabling variants, so the database must manage multiple versions and
support merging them correctly. Lastly, this is done multi-site.

As in the UK, there is legal separation of railway companies that run trains
from railway infrastructure management. Suppose a railway company
wants to run a train from Frankfurt to Munich every Monday January to

38 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
August 2005, stopping at various intermediate stations. You need train
objectives, stops, size, speed, etc. info, plus track info to output a timetable
for this train that satisfies all requirements, especially the requirement that
two trains not occupy the same length of track at the same time.

RUT-K supports the train path managers by effective display of complex
data, by graphical data editing and by producing reports. It calculates
running and blocking times interactively with the users, shows conflicts,
and computes the timetables. Performance is the hard part of this task. You
need very fast calculation of times, very fast zooming of displays of
problems and fast update. Each client uses 100 Mb of data. She thanked
John McIntosh’ for his profiling work on their system which was very
helpful in letting them meet their performance goals. There are 250,000
special trains every month, so this is no ‘redo timetable every 6 months’
task, especially as the capacity of the railway system is very packed today.

RUT-K was deployed in production in April 2003. It joined several
Smalltalk systems already used by DeutcheBahn Netz AG. She showed the
architecture of how these interacted. The success of this project was due to
• involving users: define requirements and tests, detailed spec
• short development and test iterations
• good organisation of a good team
• using Smalltalk: reuse of components from other DELTA applications,

easy build process, powerful class libraries, programmer acceptance.
She then handed over to Joachim who demoed (using some test data as we
had no link to the servers). He showed cases involving trains arriving at
stations and reversing to leave them (speed calculations differ). The system
produces times to within 6 seconds and trains can be (and at times are) run
to that precision. You enter data for train mass, weight, etc. and its tilt on
corners (the classic omission error of the UK’s Advanced Passenger Train
project of unhappy memory). Routes are entered graphically on maps of
the track network. Location-derived popUp menus let you invoke sensible
operations for regions where you have put the mouse.

The schedule running and blocking display was a multi-coloured network.
The colours help users locate problem areas needing work in the big picture
and then they can zoom in fast to detailed views, including schematics of
the track with its signals and junctions. They can switch to textual views of
data as desired. They key idea is to reduce conflict detection to a geometric
problem, formatted and colour-coded for ease of user examination. It takes
them 9 seconds to process 300,000 by 300,000 rectangles that make up the
main graphic; conflict detection takes 0.1 seconds. (When you have
millions of graphical objects to handle, John McIntosh’ advice on memory
management is useful.)

Q. Problem so complex you have to use humans to solve it? Simulation is
used to compute running time. Conflict detection is easyish (NlogN). What
is very computationally hard is solving conflicts, finding a new solution
that has no conflicts. Constraint-programming algorithms might be an

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 39
approach but there are many ways a train schedule can be manipulated -
increase/reduce speed or halt times, use another route, relax a requirement,
etc. - it is an NP-hard problem. You also do not have all the information at
one time (e.g. special trains, etc.). Today’s train schedule is the result of
work and decisions over the last few months. Lastly, people know some
things that are hard to express in numbers - who cares more, who less
whether trains run exactly to time, etc. Thus today, humans must do it. The
goal is not to find an optimal schedule but a feasible schedule. (The
Netherlands do use computers to provide a first-cut solution but they have
far fewer trains and less track.)

Q. A discussion of how real-time scheduling around problems revealed
fascinating information about how in Germany the punishments (I think he
meant ‘penalties’ :-)) for late trains vary between states; some have
punishments for dirty trains as well. Thus many factors affect how such
issues are resolved, the aim being to get back to the planned schedule.

Q. Smalltalk acceptance? There are a lot of Smalltalk projects in their
customer and company, enough that it is not hard to justify more.

Supporting Teachers in Computer-Aided Education and IT
Administration, Carsten Harle, Straightec
Straightec has done work in various Smalltalk projects (including for
DeutcheBahn, see railway talk above). Teachers have to teach pupils, to
control them, to do IT administration and sometimes to do IT installation.
Modern schools may have several hundred PCs and several thousand users
using intensive multimedia applications. There is usually no dedicated IT
administrator so teachers must install and use many software applications.
Teachers must distribute software to the PCs.

They must also find some time to teach, and ensure their pupils are not
playing games on their computers. Some pupils have a lot of energy; PCs
may not work after encountering such pupils, whether deliberately or
accidentally, so PC settings must be tamper-proof. Screens must be
sharable, so the pupils are looking at the screen the teacher intends and the
teacher can see a pupil’s screen and help them. Internet filters are essential.

Straightec developed a tool DX-Union Olympia for these tasks. (It won a
Windows award 2003.) You plug your PC into the network and it installs
the software you should have. A protector guards the hardware and BIOS
against viruses and manipulation. A utility lets the teacher start an app on
30 PCs, close minesweeper on 20 of them, along with the printer drives and
internet, and prevent their being restarted for the next hour. The installer
works from a google toolbar. The general approach to maintenance is
‘don’t fix it, reinstall it’.

Carsten then demoed. The tool uninstalls to an empty PC state and then
finds everything to install, partitions the hard disk, and installs. This can
take 5 hours but guarantees return to clear state. The tamper-proof restart
takes a minute and is good enough for most intra-lesson issues.

40 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
Once running, the control page shows a picture of where the PCs are on the
tables in the room. You can drag-drop, get visuals of the PC state (is on,
who is logged in, etc.), control display (including blanking screen - ‘O.K.
stop looking at the PCs and listen to me’), correct pupil input, and share a
pupil’s screen.

A multi-explorer is like clicking on 30 explorers at once. The teacher can
create a folder on all pupils’ PCs, copy a file to it on all PCs, etc. They can
also collect 30 copies of pupil’s work, appending login name to each, back
to the teacher’s folder. All state data is updated in real time, e.g. even while
dragging a computer icon you will see if it has been switched off or on.

He showed the teacher detecting which pupils were playing minesweeper
and closing them remotely, and equivalently starting applications (e.g.
minesweeper during a WWII history lesson) if the pupil has not started the
requested application. Transferring files (e.g. answers) from files instead of
typing them can also be blocked. At the end of the lesson, the teacher can
switch all 30 PCs off remotely via a single command (or log off, or start
new application, ready for next class, etc.).

Next, Carsten demoed detecting and remedying problem states in the PCs.

Why Smalltalk? Carsten has been in Smalltalk for a long time, so the
decision was easy for him, but it also made a great deal of sense for the
application. He wanted to distribute, for 1000 euros or less, a whole shrink-
wrapped suite. VisualBasic and C++ give worse diagnostic capabilities,
essential when building this, and slower development and deployment.

Why Dolphin? They needed good window look and feel, and integration
(this may be the first Smalltalk application ever to get Windows Logo
verification). They looked at VW, which was very powerful but has
deployment issues for their scenario, and the executables were sizable. VAs
executables were very sizable and it was costly. Squeak and Smalltalk/X
did not have the right UI look and feel. Smalltalk MT was too low level in
its GUI (excellent for low-level windows work but not for their
application). Dolphin Smalltalk XP had excellent windows conformance,
was cheap, had a simple deployment mechanism and produced small
shrink-wrapped applications. Its only limitation, that it is a window-only
VM, fitted their market. It source management is an Envy clone (for just
$50 !!!). Carsten was very impressed with Dolphin.

This is aimed at German schools today but will be extended to an English-
language version soon. It may also be adapted to the needs of small
companies (few hundred PCs total) looking for easier IT administration.

Unique selling Propositions with Smalltalk, Adrian Lienhard and
Lucas Renglii, netstyle.ch (www.netstyle.ch)
Netstyle.ch was started in 2000 doing websites in Windows and .asp. Now
it has 6 people doing web applications in Seaside. Companies of all sizes
across all industries are migrating critical business applications to the web.
Quick development and deployment is a key value, especially in letting

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 41
companies react to new opportunities. The customers expect well-factored
low-maintenance applications but web apps are in fact hard to do in today’s
frameworks, which tend not to scale.

The talk’s case study is work they did for a medium-size Swiss health
insurance company. They needed to create and manage offers (creating the
PDF documents for them on the fly), model the process of accepting new
customers, and manage customers (i.e. manage the associated documents).
It was a fast growing company with rapidly changing requirements.

Netstyle did an evaluation to find a technology that fitted web applications
and this customer’s needs. The answer was Smalltalk, and especially
Seaside. Adrian demoed the application, entering some customer info to
the web pages then saving to the database (a relational database; in the
demo, they used postgres) and creating the PDF file of the contract.

They find excellent synergy between Smalltalk, eXtreme Programming
and web applications. The customer was happy to receive frequent early
drops to test, accepting that they would see bugs, and told them when it did
not work as they wished. This early feedback often saved them from
wasting time and opportunity cost through developing down wrong paths.
They find they have a real competitive advantage over those who work
with Java, Struts and PHP.

Q(Helge) How do you market your unique advantage? At the moment we
get our customers from other customers (word of mouth) so we justify by
pointing to past results.

Q. PDF framework? Bruce Badger’s SPDF (VW), ported to Squeak. (It is
on the VW CD.)

Q. Follow-up work? Yes. The customer is giving us further work.

Q. How many customers do you have? 50 overall, but some of these just
ask for web page design and web hosting, not for web applications.

Q. More demo’s please? He showed a business-card-ordering web app that
let consultants design personalised cards within an overall corporate
identity card layout. This saved the customer the previously high cost of
iterating between consultants’ finicky requirements and the printers. The
model of the business card is done with Morphs. They imported all the
special fonts the company wants into Squeak. Once designed, they convert
it to PDF and that’s what the printers get.

Q(Alan Knight) All day, people have commented on how hard it is to be
allowed to use Smalltalk. Now you tell us how a young startup with guys
fresh from university using weird open-source Squeak can persuade Swiss
Health companies to use it; well done!! (Adrian) Our customers have heard
of Java, etc., but they have no IT departments to tell them what to use.

42 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
A Smalltalk-based system for Dynamic Multi-context information
processing, Adriaan van Os of Soops and Tim Verwaart of LEI
Soops is a Smalltalk company founded in 1992, based in Amsterdam and
Wurzburg, specialising in real-time commodity exchange systems (e.g.
power trading).

LEI is an agricultural economics research institute, providing a farm
accountancy data network. Sixty employees collect huge amounts of data,
twenty employees prepare statistical reports, used by business managers
and politicians. Rapidly-changing policies force rapid adaption of the data
systems. Different projects, focused on financial, technical, ecological or
hydrological aspects, want to use the same data from different viewpoints.

All this made them want a generic system that would dynamically generate
system behaviour from business models (slogan ‘no more programming’).
Tim explained the business model, after which Adrian explained the
implementation.

Data is costly to collect. The ability to reuse it for different purposes
(‘multi-context use’) is therefore valuable. A tractor’s cost is important to
one user, its engine power to another. They model entities (e.g. tractors)
about which they hold context-independent facts (cost, engine size). Facts
about entities may be grouped into Aspects. Context-dependent data
models hold many concepts. Given aspects are relevant to given concepts.

Relevances may be governed by relevance rules (e.g. if the quantity of
potatoes is more than 10 tons, that is relevant to this regulation) and
integrity rules (has a requirement been met) and actuality rules (time-
related, e.g. an asset’s value must become known within 90 days of its
acquisition). These rules say when an action must occur. How that action
may be done is held in procedure and interface descriptions. A procedure
is a sequence of tasks, connected to relevance by CRUD specifications
(yes, that’s not a typo: Create, Read, Update, Delete specifications :-)).

Data entry screens must be generated and structured and ergonomic.
CRUDs tell the system what can be on the screen,. layout data tells the
generator where things can be on the screen. To do this without
programming, the screen editor is a grid on which you define blocks
(rectangles) to which you bind text fields, tables, buttons, etc. Adrian
showed an editor definition and then the actual resulting screen.

Performance is the hard part since every change meant evaluating an
integrity rule which could recursively trigger other evaluations. Even
harder, every change means that widgets may appear or disappear
according to the relevance rules.

Persistence is provided by GemStone. They made a design decision to
write their domain level code so it would run, needing no change, in both
GemStone and VisualWorks. Thus they do not use GemStone specifics
(indexes or whatever) but they do have a very transparent persistence layer.
GemStone offers a 4Gig cache in Windows so when you are using 20Gig

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 43
data obviously you cannot keep everything in the image.

To enhance performance they do all rule evaluation on the server and
cluster the data. They also redesigned to reduce the number of objects by
using the flyweight pattern, by making the default date implicit, and by
simplifying numbers (e.g. 1.0 becomes 1).

Smalltalk on a Windows CE: Experience Report, Mattias Schnoor and
Marten Feldtmann
How many have a Windows CE? (A few hands were raised.). How many
program in them (fewer hands were raised). Marten’s manager had one and
suggested this work to him. Marten was no VW or Squeak guru but he was
a Smalltalker, having worked on Document Management Software in VA
for many years, so he wanted to do the work in Smalltalk. He used VW7.2.

The project was to collect working hours at building sites. Normally it took
them weeks to get working hours collected from sites, and so compute
payments. The manager had the latest PDA and wanted to use it to collect
the hours faster but did not want Smalltalk (“Why not use Visual Basic?”)
and did not want to build it inhouse (“that’s unproductive”). Marten had no
Windows CE development experience so went to CeBIT to look at devices.

The WindowsCE client talks to the internet, an SMPT relay or directly to a
server. He used the PUM (Poor Users Modeller) source code generator (a
C# generator but he wrote a VW back-end). His manager did not answer
various ‘use’ questions (inside / outside, keyboard / stylus, etc.). He found
• dBook1: 900 - 1400 euro: which they would pay (wouldn’t pay that for

Smalltalk licences): partial weather protection
• skeye integral: 1900 euro, full weather protection (still not too dear).
IDEs:
• VisualStudio 2003 Professional: large larger largest :-)
• Java: bad reputation from 3rd party developers, no SWT support
• Squeak: looked like a possible candidate but no solution out-of the box

(later found that there were solutions out there)
• VW: being demoed at CeBIT 2004

The project had 10,000 euros. Cincom refused VAR licence for project so
made it a higher cost per year (2000 euro per year, not acceptable to
management). To solve this, he changed the development process and
founded a one-person company just to get the VAR licence: he concludes
that the Cincom licence is too complicated for small developments.

The skeye integral socket stuff did not work at first due to a false secondary
exception handling issue but new CE parcels were supplied in two days and
fixed this. The dbook1 did not start at all. A new virtual machine was
needed due to a special machine instruction on the dbook1 that flashed the
precompiled instruction cache. They got two other devices for testing: Aldi
Medion and IPAQ 2210. The general advice from the machine makers and

44 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
3rd party was not to rely on testing on just one machine; things change fast.
They had very good support from Georg Heeg during this process. (Georg
invited Helge Horsh and Ralph Oba, who did the support, to take a bow.)

Generally, the process works. Problems were due to the very
heterogeneous CE market. Native DLL usage varies (some DLLs can be
missing). You need to check that your application runs on the most selling
PDAs. Support for low-end devices would be welcome (will improve in the
next two years).

The raw VW GUI was too slow, Pollock (VW7.2.1) if anything slower than
Wrapper. Using a PDA with special graphics accelerators solved the
problem, so it looked fine on dbook1 which has them; they only realised
later that there was an issue on devices without them. Normally, people
doing this use non-Standard widget sets. Smalltalk needs to do the same;
use a light widget set. Squeak shows it can be done; see squeak demo
(Small Memory Footprint project - Faure and DynaPad - at
dynapad.swiki.net/1 and russell-allen.co/squeak/faure). Smalltalk other
than the GUI is fast enough. The behaviour of Squeak’s magnifier lens on
these applications shows there is no fundamental Smalltalk GUI problem.

He then demoed his system in VW Wrapper and VW Pollock both with and
without a graphics accelerator. He also demoed the effect of Squeak’s light
widget set in Squeak browser and Squeak DynaPad (which he would really
like to have). With the graphics accelerator, it showed prompt response.
Without, it was usable but you could see multiple redraws in VW Pollock
and could count to 4 between invoking and seeing the full screen repainting
after the slowest operation. Georg remarked that further work on their
Windows CE system begins in two weeks.

Q. Multiple Pollock redraws fixed recently? You won’t see them on a
standard PC but you will see them on the non-graphics-accelerated PDA.

Q. DLLs? Always go to google and ask if you are doing anything with such
machines. You learn that strange DLLs have been more strangely
reprogrammed to make someone’s program run faster.

Using GemStone, Georg Gollman, IT Services Vienna University of
Technology
GemStone can be evaluated for free. The university administration has
25,000 customers (20,000 students and 5000 staff). There is not a great deal
of data but there are a great many dependencies and (too :-) frequent
reorganisations. A single part-time developer must keep it all working.

There is campus software, student software (they began offering this five
years ago; it has been very successful), white pages and mail router feeds
(translate generic external addresses to specific), plus the usual
authentication, account management and system support. Georg showed
the diagram of classes for handling some of this.

GemStone is a fairly standard Smalltalk dialect with the unusual feature

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 45
that Arrays and Strings can grow. It is also a database with persistence,
concurrency, indexes and access control. It also has constraints (instVar
type constraints) which Georg has used in reflection, to translate data
coming in from the web. Classes can have multiple versions and you can
control migration of instances from one version to another. It has multiple
symbol dictionaries instead of a single Smalltalk symbol dictionary (i.e. it
has namespaces).

Back in the nineties, GemStone attempted a GeODE add-on graphical
interface builder using the visual programming paradigm but they found,
as many did, that the visual programming paradigm generally, and so
GeODE specifically, was not ideal, so they moved to a WebServer
implemented inside GemStone/S. The mechanism is just message passing:
/receiver.message?param=value

For security, the method must reside in the HTML method category, else
the Web could invoke any method. There is one web server process for the
general public, others for specific tasks. Theirs was one of the first web
servers to be ported to Squeak and influenced others. The front end links to
SSLeay/OpenSSL for security. It uses GemStone’s remote procedure call
login, not linked login, to keep things in separate address spaces.

He is now working on making a development environment accessible via
the secure Web interface, class browser, etc. He demoed this to us. The web
interface access to the debugger is very rudimentary but this at least forces
him to design for testability.

The framework has a simple interface, asLink:, asHTML:, tabulate:,
itemize:, title:. Similarly there is form editing protocol, etc. He demoed
some forms, with the usual widgets.

Gemstone is a transactional system but some actions cannot be undone by
abort (e.g. sending an email) so you must delay them until the commit.
These actions are put in a session state queue. A general exception handler
keeps the system alive, returning only a very general message to the user
(who might be a hacker) and a more specific email to the system
administrator (since it might be a bug).

The system is 95 classes 282 methods., runs on HP L1000 (dual 360 Mhz,
786 Mb memory) and they have a Linux box for testing. The database is
not large: 1 million objects and 100 MB data. The shared page cache gives
good performance. They have 370,000 hits per month, mostly over the
socket layer SSL. The machine spends most of its time idle.

The system holds its own user documentation, with notes able to reference
any object. They used eXtreme Programming as a guideline. He finds that
small is efficient and homogeneous is efficient therefore he does
everything in GemStone. He is about to get a second person on the project,
and will improve the development environment to have change sets and
add more SUnit tests. He finds access rights the hardest things to test.

46 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
He find this a stable, efficient, rapid application development environment.
He recommend that GemStone vary the licence from the current ‘number
of machines’ licence, e.g. by offering a cheap licence for databases with
less than 1 million objects, to tap new opportunities.

Call Centre Application in GemStone, Petr Stepanek
They are building a call centre application. The customer is paying a high
price for each minute of the call so the agent must be served with all
relevant information; when did they or another family member call before,
who served them, who recorded data about them, actions taken, etc. All this
data will live in GemStone and will need to be retrieved fast.

The call centre request may arrive at any edge of the data model and need
to retrieve all the linked data. The approach is to implement a linked object
model supporting frequent addition of new link types with new meanings.
Links need to be hooked and unhooked, and invalidated, often at some
specified future time. This requirement has a very poor match to relational
databases and a good one to an OODB; their choice is GemStone.

They keep the links and link traversing code in GemStone, returning the
data in reduced conflict classes to the VW client. All data is timestamped
to permit viewing current and past-time-window data.

Petr discussed pros and cons.
• It is complicated (not a natural approach).
• It was at first confusing (they could not inspect until they used Trippy’s

inspectorExtraAttributes)
• It is slower (but you can fight this with caching).
As against this,
• it is less work than other approaches
• it lets past data be handled by the same fundamental model as current

data
• you can change your model with no data migration requirement
• you have a high change of a successful transaction commit.
• It is good for stochastic requests, which are common in this domain

(e.g. crash on highway prompts sudden flood of calls).
• It is robust in handling unusual requests.
• Because the system starts retrieving and caching related data at once, it

is faster than more constrained ones at being ready to answer when it
needs to.

There were some questions and discussion about time-evolving aspects; I
was preparing my afternoon’s talk so did not catch this.

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 47
Blogs and RSS: Trawling the web for meaning, James Robertson,
Cincom
James opened his blog, where he had just written notes on the immediately
preceding talk (Petr’s). A blog (web-log) is an on-line journal. To James,
the point of a blog is that it does not have to go through the marketing
department. Other companies (Oracle, even Sun and MS but not IBM yet)
use blogs for this purpose. Trade blogs are becoming common and
influential. Odd though it may seem to us, there are even more people
interested in politics than in Smalltalk and there are lots of political blogs,
hobby blogs, etc. James now has 3-5000 daily readers of his page (and no
idea how many people check his RSS feed).

At first he had ~5 readers per day. Then he got email asking him to add an
RSS feed. He replied that he’d be happy to if the requester explained what
on earth an RSS feed was. He learned (that RSS has its own politics so RSS
formats have some surprisingly optional tags and there are modules that
duplicate these optional tags, etc., all making life harder for BottomFeeder
and similar newsreaders :-)). Smalltalkers are not the only computing
science group who get religious about their technology, as he had
previously though. In fact, there is no technology so arcane that it does not
have such a band.

RSS provides blog content as XML with more tags. When he did it, he had
no idea that it mattered but in fact it does. RSS is a syndication format,
needed because while some people go to a blog’s web page and see if it has
new stuff, others have a news aggregator that gives them a summary of
which sites have changed and how much. It deals with the problem that you
don’t want to manage a thousand bookmarks and guess which of them
point to pages that have been updated since you last looked (e.g. RSS lets
him deal with the fact that a few nerds like to add spam to wiki pages. It’s
easy to fix once spotted. RSS feeds of the pages let him spot it quickly.)

At first, he added an RSS feed by building an XML document by adding
tags, which is the stupid way to do it. Later, someone told him about SAX
drivers and he used one. He wrote a small bit of code (four classes) to parse
RSS off the web and rashly put it in the repository. Then Dave wrote a UI
for it. Then people started loading it and asking for more features. Thus
BottomFeeder was born. James had thought RSS was simple (Really
Simple Syndication, or Really Stupid System :-) but he found it was not so.
(www.hebig.org/blogs/archives/main/000877.php has some aggregators.)

BottomFeeder started with an RSSFeed and RSSItem, shown in a standard
3-pane screen. Handling all RSS formats from 0.9 to 2.0 is hard; they’re not
as alike as the version numbers suggest. You have to handle lots of internet
errors, lost sites, garbage XML, network errors. Storing the XML as a file
took 60 secs to load when feeds rose to hundreds so he moved to BOSS.
They use TwoFlower as their HTML browser (will soon move to Michael
Lucas-Smith’s browser). BottomFeeder started as one package of 4 classes
and is now 21 packages and 120 classes. Jim (Columbia DC) and Dave
(Vancouver) coded, Rich Diemers (Minnesota) created the documentation,
Holger Klien (in Germany) helped with TwoFlower. They used IRC a lot.

48 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
BottomFeeder is the first Smalltalk application that James runs every day
on his desktop. It has plugins to help him access IRC as well. Get it from
• www.cincomsmalltalk.com/BottomFeeder
A year ago, Michael Lucas Smith (withStyle, well worth looking at), asked
him for a blog. He delayed two months because he’d written the server as
a single-user applications and wondered if he could fix that, not because he
was talking to lawyers, but he found he could and now there are 16 people
on the server, many of whom are non-Cincom people. (Usage rules: it must
have smalltalk relevance and no politics; otherwise, write your thoughts.)
• www.cincomsmallalk.com/userblogs
Why blog? A blog is an unvarnished set of opinions rather than something
smoothed by the marketing department. It is also an opt-in system so
bloggers need to be interesting and trusted or they loose their audience.
Blogs let you get a wider audience. If you are linked to by influential
bloggers, you get noticed.

Sames is replacing the VW GUI with Pollock. He has a blog that describes
example applications, with parallel posts by Vassili on how he would do it.
That conversation might not otherwise have happened even though they
work for the same company.

Q. Can we use this as open-source? Small-scale usage noone minds, while
large scale users will contact James to ask how they get support for this
critical product, so he is not too concerned. Just start using it.

Q. External users? Roger Whitney at a university and someone else who
has contacted him.

Q. How long to use BottomFeeder? First thing in the morning, Jim will see
70-ish updated feeds and take 45 minutes to clear that, skimming much.
During the day he revisits it a couple of times (sometimes as background
in a long phone call). He showed the feed updating, and read Michael
Lucas-Smith’s latest blog.

Smalltalk-based Speech User Interfaces: The SpexKit Platform,
Thomas Brey
This framework for rapid development of speech user interfaces is
implemented on VSE, from which they are thinking of porting to VW.

Speech User Interfaces are very complex (or very user unfriendly). They
need
• mixed-initiative: mix of application-driven and user-driven interaction
• natural language: must parse sentences, not just recognise phrases
Guru wisdom is that implementing real speech systems is beyond us for
now (‘A visual rather than a verbal future’: Walker). Thomas believes that
for a cooperative user subject to constraints (natural constraints of context
so not obtrusive to user), valuable systems can be built. Such systems must
recognise and parse speech from audio. Dialog management handles the

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 49
results of this and prompts speech synthesis and output of responses.

Thomas presented a simple mixed initiative example of asking for a long
number where the user may say the whole number or say it in parts, and
may correct themselves or correct the system’s misrecognition. SpexKit
addresses dialogues of this kind using augmented transition networks, with
a distinct module managing the procedural parts of the dialogue. Classes
SpkDialogObject, Dialog, Subdialog and DialogStep have actions and
transitions, and targets (end, back, context and self) with definitions at
lower levels overriding those at higher levels (so ‘repeat’ will prompt the
machine to repeat the last utterance, not the whole dialog). He showed an
example script written in SDML, the scripting language.

Their application aims to invoke commands deduced by the dialog as
appropriate. They have C and Java interfaces so can drive ST, C and Java
backends. Likewise it interfaces to speech input/output technology. (One
use of their system is to provide test rig drivers, connecting simple test
applications to speech devices for customer evaluation.) They interface to
many market-leading speech devices. Thomas closed by offering to demo
his speech-enabled washing machine to anyone requiring it. :-)

Q. SDML is your creation? Yes. It has as much expressive power as many
larger languages.

Tools
Abstract Interpretation, Program Analysis without Tears, Andrew
Black, Portland University
This idea first appeared in a famous paper of 1977. Abstract interpretation
is about taking the information you need and ignoring the rest. An aerial
photo and a map both have less information that the real thing and have
disjoint information. In programming the real thing (‘concrete artefact’) is
the program with standard semantics, and an abstract interpretation is, for
example, one in which variables are replaced by their types. Andrew
showed the idea by systematically rewriting the Fraction>>reduced
method to be just a manipulation of types returning a type.

Andrew is interested in inferring method requirements. If a method sends
self then it needs a concrete class. He briefly reprised the Virtual Categories
work he presented in Bled (see my last year’s report), when he said that to
analyse self sends needed source code for all methods (showed picture of
himself saying this). Then John Brant told him it was not true; you could
use bytecodes (showed picture of a ‘John Brant’ that he got from the web,
probable date sometime in the 1700’s; alas, John is not here to let him
update the picture :-)). Thus his time in the Camp Smalltalk room at the last
ESUG in Bled was mostly spent updating his tools to use this idea.

Bytecodes are held in CompiledMethod, a subclass (in Squeak) of
ByteArray, which has both instructions (bytes) and the literal table. (N.B.:
big-endian and little-endian machines flip literals: to browse them, use
CompiledMethod>>literalAt: and not something more primitive.) The
InstructionStream holds the ContextPart. The Decompiler works by postfix

50 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
byte code -> prefix -> decompiled source. InstructionPrinter is where you
write a single-method-studying decompiler, but subclass ContextPart for
more complex things.
InstructionStream subclass: #SendsInfo is the core class of his abstract
interpreter. It runs a collectSends loop.
end := self method endPC.
[pc <= end] whileTrue:
[self interpretNextInstructionFor: self]

Just look at InstructionStream>>interpretNextInstructionFor: to see how to
parse what you need. To detect self-send or class-send, simulate the stack
by pushing the stuff you care about and just pushing a nonce #stuff for what
is unimportant. It was easy to write; if you miss a method you just get a
DNU and then write it. For straight-line code, this just runs tallying the
self-sends, etc. Loops are where this kind of thing usually get hard but
Andrew assumes that all temp sends are object sends and so in a loop a send
never changes from self to object or vice versa.

Q(Roel) Optimised methods? We accept that we don’t track those.

Forward jumps (e.g. in ifTrue:ifFalse: where one branch jumps
forward to get to returnTop) means we can arrive with two stacks. We must
then merge the stacks
interpretNextInstructionFor: ...
self at mergePoint ifTrue: [self mergeStacks].
.....

Blocks are the trickiest thing in Smalltalk.They are compiled inline and
copied onto the stack when executed. The only reason Andrew needs to put
anything more than #self, #class and #stuff on the stack is because he needs
to stuff a block’s argument number.

Initially it took 27 seconds to analyse the whole image, 600 microseconds
per method. The time went in dictionaries (atMergePoint was usually
false) and in OrderedCollection stack manipulation (which is slow), plus
interpretNextInstructionFor: was doing linear search. He did this
in the last two days at Bled, much helped by John Brant and Vassili Bykov.

It was faster and more accurate than his prior work, and the code
(owner ifNil: [self]) cellPositioning

was detected as a self send in this implementation but not in his older one.
Abstract interpretation is fast since bytecodes are designed for fast
interpretation.

Q. In Java, there is an issue of types having to be the same at every merge
point? In Squeak, types are always the same (Object). Stacks must always
be the same, height is only issue. (He had an assert and they always were,
so this confirms the Squeak compiler works OK if anyone was concerned.)

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 51
Garbage Collection in Smalltalk, John McIntosh, Corporate Smalltalk
Consulting
(John gave a more detailed discussion of this subject in his tutorial at
Smalltalk Solutions 2004. Unfortunately I missed it but I assume his slides
are on the website. Back in 2001, he covered some of the same material in
a talk I wrote up in my 2001 ESUG report.)

John maintains the Squeak TK4 and Macintosh VMs.

Years ago, John saw an app that ran needing 8 Mb but actually kept
growing to 18 Mb and then collecting garbage. He eventually worked out
this was because it was configured for a 16Mb cache machine. John
showed some hilarious internet postings by professional programmers in
the last year showing how ignorant people can still be about GC.

Many GC decisions were made in the ‘80s and are still governing things
today. VW has improved in this respect recently, driven by the fact that
there are now some visible VW apps of small size.

GC began with reference counting. Each object kept a count of its
references and died if it had none. There is still a class Tracer that can check
that these counts are correct. Next came mark and sweep. From the roots
of the world, find all reachable objects. Objects we don’t reach are freeable.
Compaction to free these objects is slow. Copying reachable objects from
FromSpace to ToSpace and then flipping FromSpace and ToSpace is faster
(provided you have enough memory).

Q Concurrent algorithms? Hard to do. These days memory can be swept
fast and the pause in your app while it does is less risky than a concurrent
algorithm.

A generational garbage collector varies this by separating objects by age.
Most objects die young in NewSpace while those that survive are ‘tenured’
by being copied to OldSpace. A RememberedTable records NewSpace
objects referenced by OldSpace ones to save NewSpace algorithm having
to search OldSpace.

John showed an example of an application where attempting to add many
records to a table found a bug of grow-memory interacting with GC.

Squeak has a very simple mark-and-sweep, young-space/old-space system
that was designed 15 years ago to let music play with no stutter (and so
today runs in much less than a millisecond). John gathers from Claus that
Smalltalk/X has a 3-instruction allocator; Squeak’s is 1000 instructions.
John also reviewed the VA and VW GCs. VW is very structured: Eden,
Semi-space A and Semi-space B, LargeSpace and FixedSpace, OldSpace
and PermSpace plus the Stack and the CodeCache. John showed some
time-series chart for when various GC events occurred in an application
with given survivor space sizes.

In pre-VW5i.x, the performance tools excluded GC time, which could

52 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
produce some odd statements about time (e.g. a free-chain effect where
loop allocation would sweep down a huge linked list looking for a usable
freeable object before allocating). He showed a case where a 330 second
test could be reduced to 200 seconds just by retuning the GC values. In
another case, a 500Mb image-size application, John reduced GC events
from 4312 to 2600 in a given cycle of work by tuning, eliminating GC lock-
up cases that had been afflicting his client. By contrast, a German railway
system he checked was well factored (see later talk).

Prevention or Cure: approaches to Configuration Management in
Team Development, Niall Ross, eXtremeMetaProgrammers
I know two approaches to configuration management in team development
in Smalltalk. The one I am used to is the standard (I assume?) approach, in
which large-grained code components serve for both team development
and build. Developers expect to find themselves working simultaneously
within the same CM units. Thus clashing versions occur and merge tools
let developers resolve clashes. This might be called the ‘cure’ approach.

An alternative approach I have recently encountered is one in which there
is a developer-oriented CM structure orthogonal to the build-oriented one
(c.f. class categories being orthogonal to Envy apps or Store packages).
Developers create fine-grained task-oriented CM structures. They expect
these to let them avoid clashes. This approach I call: ‘prevention’.

Do I believe that prevention is better than cure? Hmmm

In the ‘cure’ approach, e.g.
• Store: packages, bundles
• Envy: applications, configuration maps
code stream divergence and merging is expected. Store computes fine-
grained differences post-hoc, resolves all it can automatically and interacts
with the developer to solve the rest. Envy provides change browsers that
can load alternatives; the three-way difference browser add-on provides the
extra data and UI on which a Store-like merge tool could be written.
Developers control the whole of their current code components’ state in a
divergent stream but have limited control over their code components
boundaries in any stream; that tends to be set by the overall build structure.

An example of the ‘prevention’ approach is the project-specific (patented)
FDP development method. An FDP is a developer-built code component
orthogonal to the underlying build CM structure (which is standard Envy).
The developer adds classes (those classes they have edited, normally) to an
FDP they create. They can select class-by-class and/or invoke a scrape of
their current image to capture all unreleased classes. Further capture of
method and shape changes to the chosen classes is automatic (Envy-like).

FDPs have several characteristics of standard code components. They are
loadable and exportable between repositories, can be viewed in a tool that
parallels Envy’s application manager, etc. In the FDP lifecycle, editioning
and versioning are Envy-like but there is no (developer-controlled) release.

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 53
Instead developers submit their FDPs which their manager and the owners
of classes it contains then approve or reject. The developer can then apply
(i.e. release) a wholly-approved FDP to the current development base (or
retract it if they discover a problem while it is going through the process).

Thus applying to the development base is the usual way of connecting the
developer-oriented FDP objects to the build-oriented Envy objects. There
is also a tool for controlled mapping of FDPs to build components directly,
without loading either, which is useful when back-filling bug fixes.

FDPs also hold a business justification, a technical description, notes if
they should (unusually) require specific upgrade actions, and data on their
test state. (A smoketest system loads an FDP onto the current development
base, runs many batches against three test databases, one for each of the
three lines of business, and emails the results to the developer. SUnit tests
were introduced more recently. A developer can add tests to an FDP, or and
some 1250 general SUnit tests that are run every day.)

Having encountered this alternative to the standard approach, I’ve found
myself thinking about its pros and cons. On the plus side, the developer
gets to work with task-oriented code components that they control. To add
a new feature or fix a bug, they select just the affected classes. The
development stream is a daily-updated current build structure in which
merge clashes are rarer than with larger code components. Production
streams can likewise be updated with bug fixes and fast-track releases with
less risk of merge clashes. There are also benefits in having objects that are
simultaneously reified task definitions and code components describing the
work done in the task.

The minus side has some implementation-specific issues and some more
fundamental ones. FDPs are not fine-grained enough: they should hold
class definitions and methods, not classes; work on this is scheduled. Until
recently, class deletion was more tedious than it needed to be, causing
system bloat that is now being removing. FDPs are not as configurable as
typical build components; they cannot hold FDPs, have specific load and
unload actions, etc. There are no integrated coding tool equivalents of
Envy’s ApplicationsBrowser or Store’s package view in the Refactoring
Browser. Lastly, use of underlying CM constructs could be more elegant.

The above are all fixable now Smalltalk is no longer on the company ‘sell’
list. A more fundamental issue is that FDPs hide the underlying build CM
structure issues undesirably. One consequence of this is that problems can
accumulate in this hidden structure (visible only in the many warnings on
the normally unwatched fast-scrolling Transcript of the daily automatic
build). Periodically, these cause problems in the build; the problems are
fixable but A second consequence, reinforcing the first, is that users
who do not come to the project with a Smalltalk background can remain
ignorant of build CM issues and techniques.

Another issue is that merge resolution tools are neglected under the impact
of the philosophy that seeks to avoid them. Clashes do happen from time

54 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
to time. More importantly, merge tools are also reversion tools when what
has been released later reveals problems. Thanks to the test process, this is
rare, but it is unpleasant when it occurs. Development build state is
gradually lost. It is hard to revert to an old development build.

This interacts with the fact that the freedom to choose your own build
components is a two-edged sword; others can do the same. Classes you
were not planning to change, so did not put in your FDP, get changed by
others and released into the daily base. They will have tested that they did
not corrupt the base before releasing, but how they interact with your code
is for you to experience. This can be a plus - you are made aware that you
have an issue with someone else’s code earlier than if you waited till you
were ready to merge - but assessing what has changed around you can be
more work than with large-grained code components.

A merge tool (e.g. Store’s) that computes a list of class definition and
method differences post-hoc, and a tool which captures a reified list of such
items as work is done (as noted, the FDP tool does not quite do this today,
but it could), are doing similar things at different points in the lifecycle.
When teams on several sites frequently apply work to a development base,
and occasionally to test and production bases, complexity must be handled
somewhere. The FDP process, devised when merge tools were less capable
than today, lets the user choose an optimistic merge strategy early, while
they are doing the development. I would be interested to talk to anyone
who has used Store-like merge tools on a multi-site system of similar size.

Moose
(I only caught the end of this talk.) Moose is a metrics tool implemented in
Smalltalk, integrated with the StarBrowser, able to analyse Smalltalk, Java,
C/C++ and COBOL. It presents the structure of the software graphically.
Classes are shown as rectangles, larger if they have many methods, tinted
to show few or many lines of code, coloured to show how a class evolved
over time (extracting information from Store). Moose is on the VW CD.

Q. Dynamic test recovery? There is a PhD student working on that.

Porting Projects
Porting from VSE to VW with Pollock, Christian Haider, smalltalked
Visuals
There are still some important commercial VSE systems out there. It was
always unclear what the migration path was, GUI being the main issue, as
it usually is in ports. Pollock is conceptually close to VSE’s GUI approach.
Christian is here to tell you that porting VSE systems to VW with Pollock
is very easy and well worth doing. He will also give the checklist of things
to do, using his experience in two commercial port projects.

VSE systems need to port because Window is changing (will it work on
Longhorn), because already cracks tend to develop (occasional strange
behaviours), and to exploit new features and be able to use new platforms.

As VSE and VW are both from Cincom on the same contract, there is no

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 55
licence cost to migrate but there is a cost to migrate and to learn the new
tools. A French group migrated to Ada (!!!!), and sometimes managers take
the opportunity to kill Smalltalk and migrate to Java or C#; get in first!!!

How to migrate:
• Only migrate, don’t improve at the same time. Projects can fail because

all their nice-to-have’s get crammed in.
• The people are migrating, not just the code; they must learn new tools.

Therefore always have a consultant who knows the new tools. The
consultant must guide people to use the tools (keeping their own hands
off the keyboard). Christian recommend a configuration of a single
keyboard, table and mouse, projecting to a beamer, when doing this.

Porting steps:
• create a baseline that will load in the new platform without serious

warnings
• make it runnable
• tests are very important
• build a runtime; don’t say ‘finished’ when only the development

environment is done
The baseline is a defined state. You want to freeze it but projects have to go
on developing so migrate as fast as possible - Friday to Monday. The
migrated source should have the same module and version structure, and
its comments should also be ported to package and bundle comments.

To get all the sources into VisualWorks, decide the module structure and
choose a single system namespace for all the code. Team/V maps easily to
Store. If you don’t use Team/V, Christian suggests an overall bundle
containing a porting (base issues) bundle, an application bundle, a tools
bundle and a tests bundle.

Next, decide how to handle external interfaces. The format of DLL calls
<api: name args return> is different in VW and must be converted;
this is straightforward. Sockets you should just rewrite using the VW API.
The same applies to database connections. COM is a real problem. VSE is
very integrated with windows but VW has only SmallCOM/X, which is
what you must use.

The actual physical porting of the code should be done via a tool to file out
XML VW source format. You need a VSE Porting package containing
VSE namespace, VSE.Class, VSE.DynamicLinkLibrary with API parser.
The parser just reads the API code so it loads without errors. You need a
tools package containing the Browser list icons.

File-in by opening a GHChangeList. Ensure Undeclared is empty before
starting, set the default namespace and encoding. Load the sources. Replay
all to do
• missing superclass -> VSE.Class

56 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
• ExtenalInterface -> VSE.DynamicLinkLibrary
Then resolve all Undeclareds. For globals and pool variables add a global
in the VSE porting package.

Now you have your baseline and the real work can start. Empty the porting
package by really resolving all Undeclareds. work through the ‘message
sent but not implemented’ list. Make the code load without any warnings.
Run code critic and resolve all serious bugs (and others as you think
needed). Eliminate unnecessary system extensions and unused code. Note
remaining problems. Try to avoid nil return checking; cure the nil disease.

The first tool you use to help you is the rewrite tool. Be familiar with it and
use it to solve problems once and repeatably, not over and over again
making new mistakes as you get tired.

Will you emulate or replace the GUI? Christian showed a table of how
VSE, VW Wrapper and VW Pollock differed, showing how much more
directly VSE’s GUI maps to Pollock. Pollock has 4 interacting classes,
Pane (central class) has Frame (always) and Artist (if you want special
appearance) and Agent (if you want special behaviour). He also showed the
widget table, black for all that have even the same names (most) and blue
for differently-named things. He showing us how similar the code is to add
a widget in VSE and in Pollock.

Porting from VSE to Pollock is easy; it can be prepared in a few weeks and
then achieved in a small time-window, not delaying onward development
of the system. It also improves system quality as a side effect, since every
method is effectively being checked in various ways.

Smalltalk Modernisation Technology, Michael Vosgen, CEO Tricept
InformationSysteme AG
From a fat client to a multi-channel server. Frameworks, the subject of the
last talk, are fundamental to this talk too. A smalltalk system developed in
the early ‘90s for banking needed to be upgraded.

Tricept is an IT-consulting company, 30 employees, working with
Smalltalk since 1989. They build OO applications and frameworks for the
banking and insurance sector. They have delivered one of the largest
ObjectStudio Front-Office applications. They are very keen in Smalltalk
but expect a shaking out of some Smalltalk IDEs in the market. They work
with Synchrony systems.

Existing Smalltalk applications have a high value to their users. However
there can be issues adapting them to new uses, for example if they must
become multi-user or servers of other systems. Thus new projects are built
in current Smalltalk dialects, or Java or .Net, rather than in the old dialects
(VSE, digitalk; Michael suggested that ObjectStudio may be approaching
that point). The result is a standstill in development, and management
discussion of dropping Smalltalk entirely.

Two or three years ago new projects were initiated on technical arguments.

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 57
Today, solution of business problems is what is discussed, not technology,
IDEs, etc. This is a chance for Smalltalk because it is productive. Their
Java developers (more than half the firm’s income in 2004 was outside
Smalltalk, in Java etc.) confirm that complex functionality is easier to
implement in Smalltalk.

A large Smalltalk application may contain three-to-six thousand classes, of
which a third are user interface. Assume there are 4,500 classes and that a
Smalltalk developer costs 1000 euros/day (he noted this was a generous
rate but it makes the calculations simple).

Firstly, we ignore tools and look at new development (in Java say): assume
a Java programmer needs 2.5 days to reimplement a Smalltalk class, so it
will cost you 11 1/4 million euros to replace your application. To future-
proof your Smalltalk application will take half the effort, 1.25 days per
class, so a little over 5 million euros.

Now think of tool-based migration. If a tool promises to let you map your
application code to Java taking 0.4 days per class (1.44 million euros),
managers may thing converting to Java is cost-effective.

However modernisation is more than simple migration. It means acquiring
a future-oriented base for mission-critical applications. This needs to be a
development, not a revolution, to preserve the existing value. Small
components need to be built and integrated into the existing system. It is
safer, it shows better ROI for existing applications and it lets you learn how
to modernise as you go. Above all, it preserves the existing business
processes. You start with a vision of the target system: the new technical
environment, the new databases, platforms, etc., that must be connected.
What new modes of use are needed? Define what the results of each step
are to be. Each step must be put into actual production as soon as possible.

He showed an example of a typical early-mid ‘90s Smalltalk legacy
application: fat client, layer architecture, framework. He then showed a
modern, multi-channel architecture, with various access paths (internet,
thin client, ...) talking to a central server that coordinates use of services
from various backends.

One step could be changing the fat client from ObjectStudio to VisualAge.
This is simple in the slide (one block animatedly slides out and another in),
less simple in reality. Next, the top layer of the architecture could become
a communications gateway to a thin client, which then acquires an HTML
client and other servers as its clients. You could stop there, or go on to start
migrating your server architecture.

Smalltalk to Smalltalk: two dialects are never 100% equal. Code syntax is
almost identical. The base classes map closely.

Smalltalk to Java: Michael was more sanguine than I would be, but was not
suggesting it was easy.

58 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
SMT (Synchrony System’s tool) maps code to an abstract model with
much meta-data, and also maps the UI to an abstract model, using various
tools: diagnostic, name transformation, GUI mapping and rewrite rules.
The final transformation is logged in detail, to help traceability.

Michael suggested that development could continue while modernisation
was in progress, by defining merge points for remerging the code. I feel
dubious. He concluded that stepwise modernisation of systems in old
dialects is cheaper and less risky than new development.

Q. Success statistics? Synchrony have had several successes mapping
Smalltalk dialects to other Smalltalk dialects. They have some current
projects mapping VisualAge to Java but no success statistics are known.

Q(Andreas) Smalltalk-to-Smalltalk preserves the comprehensibility of the
design. Andreas’ experience is that Smalltalk to other languages loses this,
so the resulting code is unmaintainable. A Smalltalk domain hierarchy
mapped to Java may look very different so, especially if generated, may be
a much less clear mapping to the problem domain. What is your
experience? There was some discussion. Michael thought it was doable but
agreed clearly that it was of course better to map to another Smalltalk.

Q. Does EJB sell to management? Not any more. This is part of the change
he spoke of that happened in the last two years

Q Why did your client choose to port to VAST? They already had a general
IBM licence so moving to VAST was a no-cost option.

ESUG Innovation and Academic Track
ESUG Innovation Award Demos

As we filed in to the room, the screen showed a country-and-western style
singer expounding the delights of the model-view-controller paradigm
(“...model-view, I love you...”). I like Smalltalk too but there are limits :-)

This session presented the applicants, after which we dropped our ballots
in the box voting for first prize (1100 euros), second (500) and third (200).
(Noury also showed some Smalltalk work on the web for 3-4 year-olds.)

SmallWiki, Lucas Renglii, netstyle.ch and University of Berne.
Lucas did the presentation in SmallWiki with a slide-oriented plugin.
SmallWiki, like other wikis, lets you author web pages quickly. However
SmallWiki is also a content management system. It has security policies
(these pages publicly-editable, these only by X and Y, these are visible to
all, these only to Z, etc.). It is well componentised and an interface, in
SmallWiki, lets you configure those components (‘next’ buttons, picture
gallery, calendars, etc.) SmallWiki is fully object-oriented; every page has
an object model created from parsing the page. Thus you can do powerful
searches, etc. It is well tested; he showed opening the page that runs all the
tests and shows results. SmallWiki is available under the MIT licence.

It is currently on VW, Squeak and #Smalltalk. It is used by the ESUG home

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 59
page, the Wiresong Monticello home page, the Squeak Germany home
page and the Smalltalk composition group. It is also much used in the
universities of Berne and Brussels.

They are now working on SmallWiki 2.0 in which the engine will have a
meta-model, and views will be Seaside, Trippy, etc.

Q. Tables? Define a table in the usual Wiki way and use CSS stylesheet to
determine how it looks. He thinks a single default table adequate (I don’t).

Q. Info in repository is confusing; which bundle is top level, etc.? Noted.

StarBrowser 2, Roel Wuyts.
The model part is now on Classifications version 2 and he has managed to
eliminate a class (20% code reduction !!). He has added tabs and showed
switching between Trippy and class browsers. It now reuses the same
Refactoring Browser window if available (faster). A vertical toolbar is not
trivial to build in VisualWorks but Roel has done it; it manages the various
looks available. You can move the toolbars and etc., to horizontal, vertical
etc., to exploit your screen shape to best effect. StarBrowser wraps the tools
it displays and you collapse it to see just those tools whenever you wish.

Roel has changed the drag-drop highlighting to make it easier to see where
you are moving things (good; that was a need I had noticed). Roel showed
its assignment of browsing tools, working on things in the Refactoring
Browser, in Advance, etc. It also tracks what you are doing, so provides
recent methods, popular classes, etc. It is in the Cincom Public Repository.
He checks all tests in VW and in Squeak before publishing. StarBrowser
lets you build any kind of classifications, grouping classes, objects, slides.
You can use it for to-do lists, to track bug hunts, to make presentations, etc.

SqueakMap, a Web Catalogue for Squeak, presented by Noury on
behalf of Goran Kempe
SqueakMap lets developers download and install selected packages. It was
inspired by Gnome and Debian. The master server distributes map copies
to the various servers whence they can be downloaded. A web site lets
users create and manage their accounts, and view data on the various maps.

Today it has 467 packages, two more than it had on Sunday when he wrote
the slide. SqueakMap work continues: they want to increase mirror
robustness, do incremental update, enable local map modification (so you
can do it without a web browser), and move to an architecture of one
logical distributed map (instead of current single-master/multiple-mirrors).

BottomFeeder, presented by Alan Knight of Cincom
Alan explained that BottomFeeder is an application built by James
Robertson, who is product manager for VW in his spare time :-). Those
who know Jim know he likes to express his opinions and so wished to
express these on the web. He was asked to provide an RSS feed and after
an initial delay (“What is an RSS feed?”) did so. He has created a very
polished application that is used by people who do not realise it is in

60 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
Smalltalk (or would not if Jim did not advertise that fact so vigorously).

BottomFeeder lets you subscribe to e.g. GlorpNews (Alan updates it every
month or so), BBC News (if you’re interested in the less important matters
discussed there), etc. Alan showed it working, looking at the various views:
summary, HTML, XML, newspaper view. BottomFeeder is one of the
Smalltalk applications that Alan would use even if it were not in Smalltalk.

The server that hosts Jim’s and other Smalltalk blogs is also in Smalltalk
and Jim can fix it while it is running, and talks about this in his blog.
BottomFeeder can update while it is live (for better or worse; Jim has not
become what some call ‘test infected’ and actually it is this that is his spare
time job :-)). Load without restart is a checkbox, off by default but if you
want to live dangerously you can.

Topologos, Patrick Chenais, University of Berne
Built by a team of 4 who work on it one day a week. Topologos is written
in Squeak and models processes and objects together. Merging these two
solves problems of inheritance and attributes.

In today’s typical large company, no one knows any more exactly what the
processes are and what data is available. Tools for modelling these tend to
be for workflow modelling or data modelling but not both. Patrick sees a
subclass as a group of objects entering a process. (What is a student? A
subclass of Person defined by entering a learning process.)

Patrick then demoed, instantiating objects from a palette and relating them.
He then loaded a more complex model and discussed it.

LCSTalk: a Classified Learning Platform for Multi-Agent Systems,
Serge Stinckwitch, University of Berne
Michael Piel is the main author of this system.

Reinforcement learning is learning reinforced by reward. Latent learning
occurs without this. (John Holland devised this learning classifier system.)
Agents are given a reward (a scalar value) by the environment when an
action succeeds. Agents are propagated by genetic algorithms.

LCS is a software platform for designing and experimenting with single
and multi-agent learning systems. He demoed experiments using a maze, a
prey-predator scenario and reconfigurable robots (see his earlier talk). The
reconfigurable robot that was trying to learn to walk took a long time to
master the skill, but I think that was a comment on the robot’s intelligence
that was being simulated. not on the simulation system. :-)

ESUG Academic Talks
Design, Implementation and Evaluation of the Resilient Smalltalk
Embedded Platform, J.R. Andersen, L. Bak, S. Garup, K. V. Lund, T.
Eskildsen, K. M. Hansen, and M. Torgersen
Mads Torgersen (Aarhus university) has been working with Lars et al. on
VMs for small embedded systems. (See my reports of talks by Lars at

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 61
ESUG 2003 and Smalltalk Solutions 2004.) Embedded systems have lots
of problems. We would rather use a high-level safe platform-independent
dynamic language, i.e. Smalltalk.

In the past embedded meant resource-constrained, real-time no-GUI, i.e.
not Smalltalk. Resilient is about how discovering how small can Smalltalk
be by going back to the early days when Smalltalk was in charge (no OS).
They have an external reflective-interface IDE, a small interpreter-based
VM and real-time GC (about which Mads can say nothing because of IPR
and because he knows nothing about it). They “eat their own dog-food”,
i.e. this is implemented in Smalltalk, not in C or whatever.

The programming environment is an Eclipse plug-in made to look like a
Smalltalk IDE. The whole thing is designed to be a Smalltalk experience
and can be connected to the VM at any stage, so you can repair the
customer’s problem while running over any IP connection. It is Smalltalk
with a few tweaks.
• It is source-code based and includes a class syntax for ease of use with

existing systems of likely users (and Eclipse likes it).
• Typed LIFO blocks: blocks cannot be assigned or returned. This is an

essential limitation for performance: no heap-allocated environments,
no stress on GC. However a block is not really an object in Resilient as
it cannot be stored or returned.

• Atomic ‘test and set’ construct, i.e. test a value and set it if the result is
a given value, e.g. owner ? nil := Scheduler current.

• Safe memory access, e.g.
io := Memory at: 16r90040000 size: 16r20

Its 128k fits comfortable between C / assembler and Java’s megabyte.

Open issues: deployment (can change code on one device so need to
configure same change on all devices) and performance critical code.

Q. What is being done at present? Several research and some commercial
projects. One Mads finds exiting is measuring road conditions in your car:
every 10 metres (36 times a second) measure road conditions, how icy it is,
etc., via many complex calculations.

Q. Security? Would be handled at application-level as suitable protocol?

Q. Availability? Until a month ago, you could download most of this. Since
the company was bought, all these links have been disabled.

Q. Platforms? StrongARM and quite a few more. (Mads did not have the
full list in his mind but provided the data later.)

Parcels: A Fast and Feature-Rich Binary Deployment Technology, E.
Miranda, D. Leibs, and R. Wuyts
Writing software is easy; just use Smalltalk. But then you have to deploy

62 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
it. Roel has found that when mapping a Smalltalk-oriented class-extension-
using design to a language that lacks class extensions, he has had to make
changes simply to make it deployable. This is an example of deployment
driving design.

Parcels are a binary code deployment technology that support class
extensions, can be loaded and unloaded, are very fast, and have meta-
information.
• Loading and unloading: parcels remember what was not loaded

(extension of class that was absent), whether a class changed shape and
what methods were overwritten. Unloading restores prior state,
restoring methods that were overwritten instead of deleting them. Thus
you can have A and C in one package, B and D in another, with D
subclassing C subclassing B subclassing A. (Niall: useful for e.g.
complex platform-specific and generic hierarchies.)

• Fast: pickling is Eliot’s name for storing the object graph so it can be
loaded (unpickled) later on, using a recursive descent parser. In the
simple obvious design, writing is easy but reading (have I got
superclass for this yet?) is slower. Parcels separate and order the node
descriptions from the arc descriptions. Thus reading back in is very
fast, writing slightly slower (Niall: the right choice; fast reading is
usually more important than fast writing for usability and commercial
value). Roel showed a format indicating the structure of a pickled file

Roel showed some benchmarks of time to read and to write Store code
versus the same code in parcels, and also (almost, modulo trivial porting
aspects) the same code in Dolphin and Monticello (Squeak). Reading
parcels was always far faster. Writing was the same for most applications
except, for some reason, Swazoo, where parcels were noticeably slower.
He also benchmarked against local Envy in VW3, using some fairly similar
(not identical) code. Again, parcels were faster.

Q. BOSS, parcels: which system learned from which? BOSS was there first
but Roel is unsure how much influence it had. He tried to benchmark
parcels against BOSS but got no meaningful results.

Q. Ordering issues on unload? Yes, parcels remember the order in which
they were loaded.

A Dynamic Graph Implementation in Smalltalk for Self-
Reconfigurable Robots Simulation, S. Saidani and M. Piel,
Laboratoire GREYC, Universite de Caen
(Michael Piel presented as Samir had exams to run.) They want to model,
so control, a self-reconfiguring process. Their simulated polymorphic
robots make themselves from simple cheap parts. The MAAM project is
named from pseudo-BNF (Molecule = Atom | Atom + Molecule) that
defines this. He started with a simple von Neuman model of cells in an
array switching between two states depending on the neighbourhood, then
extended this to one in which the next state depends on the neighbours and
the current state. From such a model one may discover an emergent
calculus. An ant colony simulation is an example of such an emergent

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 63
calculus.

Samir has built the DynaGraph system in Squeak to support exploring
various algorithms and their emergent calculi. It has good UI, debugger,
etc. A simple example was a star-to-chain reconfiguration. See
http://www.laas.fr/robea/maam.html for more information.

An Aspect-Based Multi-Agent System, R. Robbes, N. Bouraqadi, and
S. Stinckwich
Multi-agent systems have to solve problems of distribution, parallelism,
and complex communication, which leads to complex applications. Their
MAS model is called Aalaadin. Agents join in Groups wearing Roles:
abstract representations of functionality. He presented a marketing
example with a client group containing client and broker roles, etc.

Aspect-oriented programming separates cross-cutting concerns; in this
case, concerns of persistence, synchronisation, distribution and debugging.
An aspect defines one such concern and a join point is a message send or
variable access subject to a concern. The basic logic can be implemented
much more simply without the complexity of handling the aspect concerns.
Weaving then applies the aspects at the join points to create the system.

MAS development is hard as there are many concerns to consider
simultaneously and this hinders reusability. AOP is intended precisely to
solve such problems. They have decided to unify Groups and Aspects and
use a single concept (retaining the name ‘group,’ not ‘aspect’) as they are
similar: aspects are transverse to objects, groups are transverse to agents.
They extended Aalaadin’s groups to have real modularity (Aalaadin’s were
only conceptual, not implemented) and join points, thus making them more
like aspects. Groups are now sets of roles worn by agents, reified, modular
and extractable. They have also added meta-roles to handle join points,
entering and leaving groups, etc. They find these changes make multi-
agent systems easier to design and visualise.

Q. Meta-roles? Meta-roles are needed to change the behaviour of roles.

Uniform and Safe Metaclass Composition, Stephane Ducasse,
Nathaniel Schärli and Roel Wuyts
Classes are objects, instances of MetaClasses, thus need instance creation
behaviour like other objects.
• Implicit metaclass: programmer does not specify class; safe but limited

reuse. Smalltalk 80 wisely introduced this subtle concept in safe mode.
• Explicit creation: metaclass composition is usually unsafe. You can use

ad-hoc manipulation of strings.
Stephane presented a safe, upward-and-downward-compatible
mechanism. Let A be an instance of MetaA, and let B be an instance of
MetaB and a subclass of A.
(MetaA) “c-bar implemented in A”
A class>>i-foo
^self new c-bar

64 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
Smalltalk 80 chains the MetaClass inheritance link to the class inheritance
link. CLOS lets you sink or swim. NeoClassTalk allows dynamic class
changes. MetaClassTalk provides mixin composition of MetaClasses.
MetaClassTalk provides Traits (see earlier talks). In MetaClassTalk, a
Class = Superclass + state + traits + glue methods (class methods take
precedence over trait methods). Behavior has superclass PureBehavior
whose other subclass is TraitBehavior. Subclasses TraitDescription and
Trait parallel ClassDescription and Class. Traits can be composed safely.

Stephane described some simple examples: TAbstract trait on Boolean
class, TSingleton trait on True and False classes.

Traits is available in Squeak 3.7.

Q. Performance penalty? Traits have no state so you must use accessor
methods, not in-line access, in any trait method. If you have the habit of
using accessors, you will not notice any effect.

Q. The same traits can be used at instance, class and meta-class level?
Nothing prevents this if it makes sense. For example, a trait with name:,
name, printWithName:, StoreWithName: might be used on all levels.

Q. Traits are multiple-inheritance? We all want multiple-inheritance but
there is no good language for it. Traits allow reuse of the kind that makes
us want multiple inheritance, giving us its advantages without its problems.
Example: refactoring of Stream hierarchy presented at OOPSLA last year.

Language Support for Adaptive Object-Models using Metaclasses, R.
Razavi, N. Bouraqadi, J. W. Yoder, J. F. Perrot, and R. Johnson
Complex systems from industry cannot be simply withdrawn and
redeployed once in place. These systems, once deployed, are used at two
levels, expert and operator. Run-time intervention by experts changes the
behaviour experienced by operators.

Such systems are best documented as a compositions of design patterns.
Designing objects whose behaviour may be changed at run-time is a hard
problem. The solution is to split your objects into a fixed part and a meta-
part, the latter being changeable. In Smalltalk terms, the normal object is
described by an ordinary class, and the changeable part is meta-data.

Videostore example: each cassette contains a movie. When movie data is
altered (Terminator3: assign X rating, Fahrenheit 9/11: assign (dis)honesty
rating :-)), you want to modify rental conditions for all cassettes containing
that movie, so you need two objects Cassette and Movie. But experience
teaches us that treating meta-objects as terminal objects creates unneeded
complexity; the meta-object should not be an ordinary object.

The approach is to use the class itself as the meta-object. In the example,
have class Video, subclasses Terminator, Fahrenheit. Metaclass Movie
creates and initialises these metaclasses. Limitations: two alterable
instances of two different classes cannot share the same meta-object, e.g.

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 65
cassette and DVD won’t have the same Movie meta-object. So we need to
subclass Movie to MovieTape and MovieDVD.

This is an example of the general issue of the ‘item’ relationship: a cassette
is an item of movie, a copy is an item of book, the flight you got to this
conference is an item of flight number 512. MetaClasses can adequately
capture this relationship, which inheritance cannot. Razavi’s thesis looked
at three approaches: multi-agent simulation, Smalltalk with metaclasses
and MetaclassTalk with metaclasses, and demonstrated that metaclasses
solve this issue.

See http://st-www.cs.uiuc.edu/users/johnson/papers/udp/UDP.html.

Classboxes: Controlling Visibility of Class Extensions, Stephane
Ducasse, Nathaniel Schärli and Roel Wuyts
They wish to add grammar to control the operation of changing the Squeak
system. In Smalltalk-80, class extensions are global; any application can
modify any class and everyone can see the modification. Thus two apps can
conflict in modifying a class, an application may redefine a critical method
and implicit dependencies may be created. (In Squeak, if Morph>>bounds
is redefined to return self, you get an unrecoverable crash.) Also, how do
we combine class extension with modules and with security?

A classbox is a unit of scoping (i.e. a namespace). In a classbox, classes can
be defined and imported from other classboxes, and methods can be
defined on visible classes. Within a classbox, you have a flattened view of
the world, local changes appear as if global, but extending classes will not
impact their clients outside the box. Alexandre showed how a
passwordCheck: ...
^true

hack extension could not impact a bank application subclassing the
extended class in a different classbox.

Last year, their implementation had to modify the VM. They now have an
implementation that does not require VM mods. Instead they use a cache
mechanism that adds 5 extra byte codes for redefined methods (no
overhead for invoking added methods, worst case for redefined methods is
2.5 times slower). If he redefines method #foo on Class A, a dispatcher
inserted into its method dictionary controls.

See http://www.iam.unibe.ch/~scg for more details.

Q. Classboxes contain objects? Classes are in classboxes, not instances.

Q. (Georg Heeg) Have you looked at work by Andreas in ‘89 on security-
based process models using a Smalltalk-80 VM (he has a version)? They
would be interested.

Q. (Andrew Black and others) Method lookup OK; what about state?
Enhanced class differs from superclass and/or has state values that are then

66 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
accessed in another thread that has visibility of extensions? Discussion.

ProtoTalk: an Environment for Teaching, Understanding and
Prototyping Object-Oriented Languages, Alexandre Bergel, Stephane
Ducasse, Christophe Dany
Alexandre and Stephane ported ProtoTalk from ObjectWorks and use it in
University of Paris (VI), Berne, and Montpellier. The goal of ProtoTalk is
to make teaching the principles of OO easier. For example, prototype OO
languages use the classless paradigm; new objects are created by cloning.
Composition is done by delegation and by reference; if I don’t understand
this message I call someone else. Examples: Self, ObjectLisp,
NewtonScript. What advantages and problems do such choices give?

ProtoTalk aims to have the same syntax for all its OO languages, a very
small kernel and good extensibility. A language is implemented as a
subclass of AbstractProto. Send evaluate: to a program to this subclass
to execute it. This builds an abstract syntax tree (subclasses of Smalltalk
AST nodes) which is then evaluated.

Example: NewtonScript has a double-inheritance mechanism: _proto is
searched before _parent.

Conceptual Code Mining - Mining for Source-Code Regularities with
Formal Concept Analysis, K. Mens and T. Tourwé
They wanted a lightweight source-code mining tool, to detect recurrent
patterns in the source code. Their approach, Formal Concept Analysis, is a
mathematical technique. Kim explained FCA by example, showing a
taxonomy of programming languages against the concepts of OO,
functional, logic, static and dynamic typing. Having boolean-rated Java,
C++, Smalltalk, etc. against these properties, he then studied the maximal
groups sharing these properties, thus creating a graph connecting the
groups from the top concept (all elements have these) to the bottom
concept (elements with all concepts).

They studied Smalltalk looking for methods with class names in selectors
or parameters (e.g. class Foo, method #asFoo: anObject, #import: aFoo).
Having generated the concept analysis and computed the graph, they must
filter greatly to remove meaningless noise. The output is captured in the
StarBrowser.
• Generate formal context: they seek elements that share substrings
• The concept analysis: Kim listed methods to show how the concept of

unification in SOUL would be caught by this approach
• Filtering is simple: they filter out ‘do’, ‘with’, ‘by’ and some more

weeding, but there are still too many concepts remaining (currently
filtering tends to produce a factor 5 reduction)

The tool takes seconds to analyse SOUL, minutes to analyse the
Refactoring Browser. The patterns they find are code duplication, design
patterns (Visitor, Abstract Factory, Builder, Observer). They also found
coding patterns, accessing, polymorphism, etc. They were surprised how

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 67
many of the concepts found were actually relevant.

In future they want to use FCA to study aspects and cross-cutting. and to
detect refactoring opportunities.

Q. Any study of good code from experience programmers versus newbie
code? He would expect more noise in the latter case. They will study this.

Power Laws in Smalltalk, M. Marchesi, S. Pinna, N. Serra, and S.
Tuveri
The web, the US power grid, biological systems and social networks have
all been represented as nodes, as have software systems. A random graph
is created by growing connections between each pair of nodes with
probability p. Random graphs show a poisson distribution whereas real
networks show a power-law distribution; as he showed in a graph, these are
very different. Studies have shown that static OO systems (nodes = classes,
connections = relationships between them) are governed by scale-free
power-law distributions.

Smalltalk is a dynamic language so if we encounter multiple implementors,
static analysis lets us do no more than assign a 1/N weight to relationships
to each of the N implementors. They analysed four Smalltalk systems to
see if they satisfied the scale-free power law distribution. They believe that
they do. (Much discussion with audience to explain what log-log graphs
actually meant. This used up the time for questions.)

In future they hope to correlate graph properties with software quality and
model the evolution and maintainability of the software from a growth
theory of software graphs.

I felt that dynamic recovery of types would give a better analysis than 1/N.

ESUG Activities
ESUG Business Meeting
A change in ESUG statutes was proposed and accepted. ESUG used to
have a board and administrators. The proposal was to reduce the number
needed by eliminating the administrators and just having the board, with a
minimum size of President, Vice-president and treasurer. ESUG is current
administered under French law but will consider whether next year it
should be administered as a ‘European association’ (new legal structure).

The new board was elected; see the website for the list.

ESUG Conference Administration
Stephane thanked Georg for the excellent local organisation and the student
volunteers (‘this year, they had to work’ - I think Michael van der Gulik
would say he had to work last year in Bled too :-)). For example, student
volunteers made the coffee this year, so ESUG had only to pay the bare
costs.

ESUG welcomes ideas for promoting Smalltalk. ESUG was more

68 CS9 and ESUG 12, Kothen, September 6th - 12th, 2004
profitable this year (last year they just broke even, helped by attendees
donations). ESUG also welcomes help, help organising and doing things.
The minimum help you can give is to attend the conference so if you do
nothing else, do that. Next year, Squeak will be in Belgium.

Feedback on how the conference runs is also welcome. Camp Smalltalk
will be before the conference again as usual next year (site issues meant it
had to be after this year). This year they (almost) had no parallel tracks. In
the past parallel tracks had been criticised but perhaps longer talks in two
parallel tracks would be worth doing.

Georg remarked that organising it was a lot of fun to do. The visuals are
available for reuse next year (and on the web-site as PDF.)

Other Discussions
There was a parallel track teaching day with interesting stuff on children
using Squeak (www.languagegame.org:8080/ggame/15), use of Squeak in
Spanish Schools (unfortunately Diago Gomez Deck, who was to say more
on this, could not make it) and a talk by Stephane, Adriaan and Lucas (in
German, so I barely followed it from its screen presentations and did not
attempt to record it) on using Seaside.

Claus Gittinger has won several valuable (millions of euros) contracts
recently to replace ‘90’s Java systems with Smalltalk/X systems. In all
cases, the Java systems had proved unmaintainable and unrefactorable.
Interestingly this was not immediately because they were hard to refactor
in small increments (my bugbear about statically-typed systems) but
because the code for these sizable (largest was ~5000 classes) systems was
simply not sufficiently comprehensible. The systems could not be
understood enough to be safely changed.

Claus described one of these contracts, being done for a telecoms company.
They have concentrators that used to provide print-out of all
reconfiguration (map this number to that, authorise this service, etc.). In the
90’s, a Java application was written to parse all this print-out for a wide and
evolving range of equipment and formats, and send it to a central location.

John McIntosh described his GC tuning work in Germany. His client had
an acceptance group, separate from users, who ran many tests a thousand
times all weekend on every delivery. If the time distributions were slower
than the last delivery, they would not accept it. Users found that entering
text to say why a change was made after saving it was very slow. Each
typed character was interrupting the GC which was trying to run in the idle
loop after the save, thus running clean-up before displaying the character;
John tweaked the idle loop GC behaviour to be less eager and more in
phase with requirements. That affected some other operations’ times,
trivially but such that the acceptance test team noticed, so he then had to
reimplement it so that everything showed not even the slightest impact.

Bryce told my about Continuous, a big, expensive and horrible CM system
sold by giving managers good lunches and nice bags. It has a development

CS9 and ESUG 12, Kothen, September 6th - 12th, 2004 69
system similar to FDP, but file-based with no 3-way merges or anything.
Bryce suggested it was a system for letting managers have many
developers doing work but without the unpleasantness of code ever
actually being approved and released :-). He worked at a company which
had it; he was responsible for removing it.

He has just started working in London for RMB, an investment bank who
use VisualWorks and GemStone, and are also porting some C# utilities they
have to Smalltalk.

Conclusions
My sixth ESUG
• There are signs that Smalltalk’s commercial acceptability is rising:

— interesting range of projects and clients
— serious industrial use of Squeak !!

• Fascinating snippets of history in Dan’s talk and elsewhere: how
Smalltalk came to exist and by what routes people acquired it.

I’m looking forward to Frankfurt in December and Orlando next year.

* End of Document *

	Style
	Author’s Disclaimer and Acknowledgements
	Summary of Projects and Talks
	ESUG Programme, Stephane Ducasse and Roel Wuyts
	Camp Smalltalk 9: Project Summaries
	The Custom Refactorings and Rewrite Editor Usability Project
	Other Projects

	Smalltalks, Old and New
	Keynote: Dan Ingalls
	SW Vision Smalltalk, Frank Lesser
	Smalltalk/X, Claus Gittinger
	Squeak Demo, Stephane Ducasse
	AOSTA, Marcus Denker, Software Composition Group, University of Berne
	MicroLingua: an extended conceptual model for Smalltalk, Maurice Rabb

	Frameworks
	Keynote: Winning the Application Server Arms Race: Using Smalltalk to Redefine Web Development, A...
	Relational Persistence in Smalltalk, Alan Knight, Cincom
	Smalltalk Web Framework:, a comparison of Aida/Web and Seaside, Janko Misvek, Eranova
	Cryptography for Smalltalkers, Martin Kobetic, Cincom
	TypeWise, Ernest Micklei, PhilemonWorks
	Squeak Etoys, Yoshiki Ohshima

	Selling Smalltalk
	Marketing Smalltalk - Business and Community Marketing, Monika Laurent, Cincom
	Lessons learned from starting a company with a Smalltalk product, Christian Haider, smalltalkedVi...

	Applications and Experience Reports: Commercial and Technical
	Hans-Dieter Brenner, Joseph Springer, Novatec
	The Value of Smalltalk: valuing and risk-management in VisualWorks and GemStone, Niall Ross, eXtr...
	RUT-K: Fast large-scale train scheduling with Smalltalk, Marion Jurish and Joachim Geidel
	Supporting Teachers in Computer-Aided Education and IT Administration, Carsten Harle, Straightec
	Unique selling Propositions with Smalltalk, Adrian Lienhard and Lucas Renglii, netstyle.ch (www.n...
	A Smalltalk-based system for Dynamic Multi-context information processing, Adriaan van Os of Soop...
	Smalltalk on a Windows CE: Experience Report, Mattias Schnoor and Marten Feldtmann
	Using GemStone, Georg Gollman, IT Services Vienna University of Technology
	Call Centre Application in GemStone, Petr Stepanek
	Blogs and RSS: Trawling the web for meaning, James Robertson, Cincom
	Smalltalk-based Speech User Interfaces: The SpexKit Platform, Thomas Brey

	Tools
	Abstract Interpretation, Program Analysis without Tears, Andrew Black, Portland University
	Garbage Collection in Smalltalk, John McIntosh, Corporate Smalltalk Consulting
	Prevention or Cure: approaches to Configuration Management in Team Development, Niall Ross, eXtre...
	Moose

	Porting Projects
	Porting from VSE to VW with Pollock, Christian Haider, smalltalked Visuals
	Smalltalk Modernisation Technology, Michael Vosgen, CEO Tricept InformationSysteme AG

	ESUG Innovation and Academic Track
	ESUG Innovation Award Demos
	SmallWiki, Lucas Renglii, netstyle.ch and University of Berne.
	StarBrowser 2, Roel Wuyts.
	SqueakMap, a Web Catalogue for Squeak, presented by Noury on behalf of Goran Kempe
	BottomFeeder, presented by Alan Knight of Cincom
	Topologos, Patrick Chenais, University of Berne
	LCSTalk: a Classified Learning Platform for Multi-Agent Systems, Serge Stinckwitch, University of...

	ESUG Academic Talks
	Design, Implementation and Evaluation of the Resilient Smalltalk Embedded Platform, J.R. Andersen...
	Parcels: A Fast and Feature-Rich Binary Deployment Technology, E. Miranda, D. Leibs, and R. Wuyts
	A Dynamic Graph Implementation in Smalltalk for Self- Reconfigurable Robots Simulation, S. Saidan...
	An Aspect-Based Multi-Agent System, R. Robbes, N. Bouraqadi, and S. Stinckwich
	Uniform and Safe Metaclass Composition, Stephane Ducasse, Nathaniel Schärli and Roel Wuyts
	Language Support for Adaptive Object-Models using Metaclasses, R. Razavi, N. Bouraqadi, J. W. Yod...
	Classboxes: Controlling Visibility of Class Extensions, Stephane Ducasse, Nathaniel Schärli and R...
	ProtoTalk: an Environment for Teaching, Understanding and Prototyping Object-Oriented Languages, ...
	Conceptual Code Mining - Mining for Source-Code Regularities with Formal Concept Analysis, K. Men...
	Power Laws in Smalltalk, M. Marchesi, S. Pinna, N. Serra, and S. Tuveri

	ESUG Activities
	ESUG Business Meeting
	ESUG Conference Administration

	Other Discussions
	Conclusions

