
Smalltalk Conferences between June and September 2008 1
Smalltalk Conferences between June and September 2008
This document contains my reports of
• the Smalltalk Solutions conference in Reno June 18 - 21, 2008
• the ESUG conference in Amsterdam, August 25 - 29, 2008 (and brief

info of the Camp Smalltalk 23rd - 24th and Seaside Sprint 29th - 31st)
• the VASmalltalk User Group conference in Frankfurt, September 23,

2008
I have combined my three conference reports into a single document. They
follow in the order in which conferences occurred. An initial section
‘Shared Keynotes’ gives two talks that were given at both ESUG and
Smalltalk Solutions.

Style
‘I’ or ‘my’ refers to Niall Ross; speakers (other than myself) are referred to
by name or in the third person. A question asked in or after a talk is prefixed
by ‘Q.’ (sometimes I name the questioner; often I was too busy noting their
question). A question not beginning with ‘Q.’ is a rhetorical question asked
by the speaker (or is just my way of summarising their meaning).

Author’s Disclaimer and Acknowledgements
These reports give my personal view. No view of any other person or
organisation with which I am connected is expressed or implied. The talk
descriptions were typed while I was trying to keep up with and understand
what the speakers were saying, so may contain errors of fact or clarity. I
apologise for any inaccuracies, and to any participants whose names or
affiliations I failed to note down. If anyone spots errors or omissions, email
me and corrections may be made. My thanks to the conference organisers
and the speakers whose work gave me something to report.

Shared Keynotes
Gilad’s talk on Newspeak and Georg’s talk on Bach were given at both
Smalltalk Solutions and ESUG. A single write-up combining material and
questions from both conferences tells the story better than two write-ups.

How to find the Bach house in Cöthen, Georg Heeg
(This combines the talks Georg gave at Smalltalk Solutions and at ESUG.
Questions asked and answers given at either venue are included. Strictly,
Georg’s talk was not billed as a keynote in either conference, but it presents
Smalltalk in a context of much wider interest, so I think it is worth
highlighting here.)

Dinosaur bones have been found in Cöthen, and evidence of stone age
occupation. More recently it was the capital of the independent state of
Anhalt in Germany; there are city records going back 900 years. It was also
the location of the second largest ESUG (in 2004, eclipsed only by this year
in Amsterdam).

2 Shared Keynotes
Johan Sebastian Bach worked for 7 years in Cöthen, during which time he
wrote ‘The Well-Tempered Clavier’ among many other works: Georg
played us an excerpt from the 10th piece. Prince Leopold of Anhalt was the
reason Bach lived in Cöthen for many years. (Unlike those princes who just
had parties every day and spent all their money) he was very musical,
invited Bach to the city, founded societies for the study of the German
language and so on.

Even during his lifetime, Bach began to lose popularity and only 100 years
later did the superb quality of his music begin to be recognised. Thus there
are many open questions about his life, including where he lived in Cöthen.
Today the city wants to improve its tourist trade by finding all it can about
Bach’s time there. Their first question was, ‘Where did he live?’ They got
EU funding for a suitably long-winded title (Feasibility study for) and
asked for bidders; Georg Heeg won. The bidding started in 23 March 2006;
Georg Heeg completed the task on 15th February of this year.

They did it in 4 phases as an agile project. They knew from the start that if
they used the same approach as all the historians had tried - looking for a
piece of paper with an address on it - they would fail: if such a paper
existed, it would have been found. Instead, they intended to use exclusion
as their proof method (c.f. the computer proof of the four-colour problem).

Phase 1 was drill down to brainstorm and identify key issues. Phase 2 was
locating, scanning and OCRing all the old material they could find in
archives, libraries, old bookshops, eBay. 736 documents in gothic, latin and
handwriting fonts were scanned. For example, they copied all the city
property records for 100 years. Phase 3 built the semantic network. There
were two existing semantic network products written in Smalltalk. K-
Infinity (see my ESUG reports in 2001 and 2002) is used by the police,
publishers, etc. It had no interface to word. Atlas TI is an analysis tool for
non-numeric data, but is not extensible (it easily could be but the company
only sell the packaged software). Neither of these could be fitted exactly to
their problem without some work.

They therefore created a specific semantic network solution GHBachNets.
It provided direct connections between the automatic procedures and the
human decisions. The UI was a web browser, using Seaside on VW and
GemStone. Two phone calls to Monty improved performance from hours
to seconds. The coder and researcher worked closely so UI ideas were
implemented quickly.

The first thing they discovered was that the 18th century public treasurer
was either a fraudster or very bad at arithmetic; they suspect the former but
cannot pursue it as he’s been dead for over 2 centuries. They also found lots
of simple writing errors. To do the searching, they went back to Thorsten’s
JavaSpektrum tree implementation, porting it from VW to GemStone.

They soon realised that a semantic network concept of an idea or a Notion
(Begriff in German) was naturally a class so they made it a subclass of
ClassDescription (at first of Behavior but they found they needed the

Shared Keynotes 3
subclass’ abilities as well). Thus Notion (Begriff) is a sister class to Class
and Metaclass (only Smalltalk can do this!). Special Notions are Values
and Relations between two or more Notions. GemStone does not allow this
extension of its metaclass so they had a mapping from a description of a
network to the real network in VW.

Next they needed TemporalObjects. “Bach lived in this house” is not useful
information without knowing from when to when he lived there. They
created a time framework that could handle vague and precise dates and
historical ways of dating. For hundreds of years, tax registers showed who
owned a house and how much they had paid (but not where the house was
located). They had old maps to locate things and they had a princely
homage accession record which was a few years too early, but useful
because it lists who rented as well as who owned. Thus they had a tax
register of householders in 1710, and in 1765, and of those houses with the
right to brew beer (most useful data - and doubtless a much-prized right at
the time, too :-). He showed one page of the thick one-per-year book of
which they handled 100 years-worth of books. Georg showed some of this
information in an Excel table for a single home: house built in 1738, first
tax record in 1741, relationships, graphics, etc.

All this was imported from Excel via COM connect (the VW7.6.
implementation was driven by this project’s needs).

Cöthen was in the postal system. Bach wrote from Cöthen to the city of
Erfurt (120 miles, which cost 2 groschen which was about 10 dollars in
those days); Georg showed a copy of the letter. As was typical for that time,
it listed the title, profession and position of recipient and sender in great
detail, but not the street address let alone a house number. Half of the
houses in Cöthen were owned by the Prince and rented; the rest were
owned mostly by their residents. They swiftly concluded that Bach neither
owned a house nor rented from the Prince; those records are complete. The
oldest city map dates from 1730, seven years after Bach left (and
conveniently is oriented north, not always the case in those days). By
comparing with Google earth, you can see that streets today are very
similar to what they were then. A second map of 1778 also showed little
change and was easier to work with. While Bach lived in Cöthen, the city
was enlarged and its walls rebuilt to enclose a larger area. They started to
build the new city wall on 24th February 1719.

We know that Bach must have had a spacious home. He had a big family
and students lived with him, and he needed four big waggons for his goods
when he moved (this useful fact is recorded in a humble newspaper of the
time). They looked at all the houses that had been proposed. They also
looked for any other homes that could fit.

The first candidate (Burgstasse 11) was built in 1721 (too late) and was too
small (luckily, as it has now been knocked down and is a space between
two very modern houses). The second was simply too small. A third one,
Holzmark 12, is mentioned in a list of 1855 with the names Bach and
Erhardt. However it had six or seven families living in several apartments

4 Shared Keynotes
within it - not at all ideal for music practice all the time. Stifstrasse 11 has
a sign ‘probable Bach home’ and famous historians have backed the claim
but it is not so; the project systematically proved their arguments were
wrong, and were a classic case of historians quoting each other so that an
‘astonishing’ document found by one such historian was in fact already
well known and not persuasive. Essentially, a historian called Hartung just
published a guess.

That left three homes, all owned by Johannes Lautsch. One was a shop,
which does not fit music practice. Another was seventh in the property tax
list (2 thalers and 9 groschen ~ $265), so one of the largest homes in
Cöthen. There is evidence that Bach complained that the rattle of a water
mill next to his home disturbed his music - he could only compose music
with one speed. There is a water mill 100 yards from this house. Its
previous occupant, Stricker, who was Bach’s predecessor as cappelle
maister, had his rent paid by the prince and we know that Bach’s rent, also
paid by the prince, was the same as that of the prior occupant. This looks
like Bach’s first residence.

They also wanted to find where he lived next. Before 1719, Wallstrasse was
an area of gardens and a gold and silver thread factory. On 25 February
1719 Prince Leopold decided to expand the city: he ordered Wallstrasse
and Shulstrasse to be built as streets, and ruled they would be tax-exempt
until all houses were built. It is not only in modern times that laws cause
the reverse of what the government expected. This rule, intended to
encourage building, had the opposite effect: the people who moved to the
new streets had a strong reason to delay their completion. Only when the
prince’s successor, his brother August Ludwig, ruled that only three years
of tax exemption would be allowed were the remaining houses built.

A tax-exempt house Wallstrasse 25/26 was built by Johannes Andreas
Lautsch. The house only appeared in the tax register in 1730 but it was built
in 1719, in the middle of the time when Bach lived in Cöthen. (A claim it
was built in 1712 was recognised as a misreading of 9 for 2 in an old
document.) They concluded that Bach was the first renter of this house.
When his landlord built a new house, Bach moved to it. Georg was very
pleased to note that it was only two doors away from his own house. (A
later owner of this house was Erhardt, which is where the 1855 confusion
occurred)

He demoed (in Safari; they use some clever stuff for tooltips that not even
Firefox supports yet). He showed the various lists (literature, names, etc.)
and hints, thence navigated to schematics of the houses in their locations in
Cöthen, plus tables of data on the houses.

Q. Were you surprised to find you lived so close to the second house? Yes.
(As a side effect of the work, they also discovered who built the house that
was on the site of their own house before the current building which is 1911
art deco. The builder was a doctor and Georg knows where he did his
thesis, who he married, how he built the excellent garden, and that he was
mayor of Cöthen at one point)

Shared Keynotes 5
Q. Will you find the holy grail next? If we’re offered a contract to do so. :-)

Q. How many people were employed? 30 part-time (this omits some of the
data collectors). There were 6-800 pages of handwritten text to scan and the
rest was printed in gothic or latin font.

Andrés mentioned Silverman, a friend of Bach who talked to the Italian
inventor of the piano and built an early piano. Maybe Cöthen can get even
more tourists if a connection can be discovered. Georg searched and found
some 50 documents mentioning Silverman in their data.

Georg played some more music from ‘The Well-Tempered Clavier’ to
close.

(Eliot) Is it Koethen (the spelling in all the ESUG 2004 docs) or Cöthen,
the spelling in Georg’s talk? The most correct spelling is with K (the word
comes from a Slavic language) but in the nineteenth century, or when
latinising, it would be spelt with C. The oe is just the way of anglicising an
umlaut.

Q(Christian) Why were you unable to use the existing products (K-Infinity
and Atlas TI)? We needed to customise to get our data in and we had to map
between numeric and non-numeric data; those were the two reasons.

Q. Reaction of historians? Some say, “Yes, we’ve found it!” Others say,
“We do not accept your methodology; you did not find the piece of paper
we were looking for.”

Tampering with Perfection: From Smalltalk to Newspeak; Evolving
Smalltalk for the Age of the Net, Gilad Bracha, Cadence Design
Systems
(This records material from the talk Gilad gave at Smalltalk Solutions and
the one he gave at ESUG, including questions and answers from both.)

Gilad wants a language where everything is a message send. Not almost
everything as in Smalltalk, but everything.

Relevant changes since 1984 include multi-cores and this web thingy that
Al Gore invented or maybe it wasn’t quite that way :-). We’ve learned that
security matters, that modularity is crucial and that ecosystems matter (no
he’s not referring to global warming, that’s enough of the Al Gore jokes)
i.e. how a program fits into its environment.

Smalltalk was defined to be open and malleable so it is not that secure. the
various, non-standard unsatisfactory solutions for modularity around today
are also not that secure. Interoperability: why would you want to go outside
Smalltalk? Sometimes there are good reasons, e.g. to get something current
Smalltalk solutions do not do or do not do well.

Newspeak is a message-based language with no static state in which
classes can nest.

6 Shared Keynotes
Message-based: isn’t Smalltalk? Well, Alan Kay says ‘Smalltalk should
have been message-oriented.” The idea of Newspeak is that everything is a
message. In t := Array new: n. only new: is a message send. If we
rewrite so everything is, it would look like
self t: (self Array new: self n).

Self went this way but decided to have implicit receivers, so the above
becomes t: (Array new n). That only works because of various
constraints. Instead, Newspeak writes t:: Array new: n. Here :: is a
message send but with lower precedence so you can skip the brackets. With
this, no code cares what class implementation you have chosen. In
Smalltalk, most code does not care but your subclasses care; rework the
superclass and you must refactor your subclasses. Here, you are talking to
self so no code cares. Even the class itself does not care, i.e. its method
code does not care.

Implications: access control starts to matter. In Smalltalk, all messages are
public and you encapsulate by putting things in instvars or blocks. Thus
Newspeak must apply some private/protected/public rules to messages that
are replacing non-messages in Smalltalk.

Global state is a bad thing for many reasons. Gilad focused on one:
security. Newspeak is not a secure language: it is a basis for building secure
systems. If a party does not want gate crashers then either the person on the
door can check if the person arriving is on the guest list or else they can ask
them to show their invitation. In the programming domain, the latter
approach is called capability in terms and maps well to object-oriented
systems (described in a good paper by Miller in 2006).

Thus the object-graph provides the authority but this means no static state
and thus no ambient authority. For example, you may be handed an object
that knows how to open a given file; you are not possessed of ambient
authority to open that file.

In Smalltalk, there’s a bigger problem. You can look at an object, inspect
its methods, compile new on the fly. This is one of the key things that
makes Smalltalk wonderful but of course it makes it hard to argue you have
a secure system. Newspeak uses the idea of mirrors that Self introduced
(not for reasons of security but it works well for security). Mirrors are
objects that reflect other objects but, like a real mirror, give no inevitable
ability to change the real object whose reflection you see. Mirrors act as
capabilities for reflection. They let you control what people can do and so
you can design the security you need. Mirrors are also useful for
deployment.

There is no static state, so how do classes share state: they use nested
classes (as in Beta; forget Java’s nested classes: this is not that!). In
Newspeak, classes can nest. Gilad thinks this is an oversight in Smalltalk:
if you push Smalltalk’s semantic ideas to their logical end, he believes that
this idea falls out automatically and is a powerful enabler of many things.

Shared Keynotes 7
He opened a Squeak image in which an implementation of Newspeak was
running. (The browsers are Vassili’s; see his talk in the Smalltalk Solutions
conference.) He opened a class AlternatingParser that was nested within
CombinatorialParser. (It showed the syntax. Newspeak has a syntax, not
just a file-out format. :-)) It had four slots (in vertical bars, like temps in
Smalltalk). You can only access the slots via accessors (pfun slot means
pfun, pfun: accessors are automatically and inevitably present).

either: pf1 or: pf2 = {
self assert: (pf1 isKindOf: BlockContext)
pfunc: pf1.
qfunc: pf2.

}
where pf1 is actually an accessor call to pf1 and likewise for pf2.

The enclosing class also had slots. These had initialisers and an = sign
meaning they are read only, i.e. there will be no setter available so, short of
reflection manipulation, you cannot change these values.

BlockContext = platform BlockContext
OrderedCollection =

platform Collections OrderedCollection
Error = platform Error

Q. These are message sends? The above are not expressions but they are
compiled into message sends.

A top-level class has no global scope; you must get its scope from its
superclass or get things explicitly. (They could have a global scope
provided it had no state but in fact they see no need for it.) Thus slot
BlockContext gets initialized by sending a message to platform which
returns a BlockContext class. Here we have a true modular structure. This
class’ methods have no access to the outside world except through
parameters so if you refuse to pass it an object that e.g. has the capability
to open a certain file, it cannot contrive to do so. Thus every object runs in
a sandbox all the time.

You could assign platform to a slot named platform, calling platform
OrderedCollection or whatever all over your code and be back in Java’s
situation of fully-qualified state, but they are training their users - few in
number at the moment - not to do this.

Q. So you need to know what classes you will call beforehand? The end
system will have tool support to add these as you type a class. For the
moment, you have to go back and add it as you code.

Q. Add new classes on the fly? Yes, if you have the right mirror.

Because there is no state, all the code in CombinatorialParser is innately
reentrant. We can also have other implementations that do things
differently e.g. a more complicated and larger memory footprint but faster

8 Shared Keynotes
implementation. Since all classes are accessed via message sends, plugging
in different implementations never meets hard-coded obstacles. Every
module has its own sandbox; it can only call what it is given.

The classes are created lazily; the first time you send the message
CombinatorialParser that is when the class CombinatorialParser is created.
He showed where SequentialParser was overridden between super and
subclasses. CombinatorialParser can be extended as a subclass of
SuperCombinatorialParser, whose slot is defined by
SuperCombinatorialParser = super CombinatorialParser

The message Object is the same: it is defined in Object and can be
overridden in subclasses (Object exists in the bases system but any
subclass’ Object would be created when first called).
WrappingParser = CombinatorialParser

says WrappingParser’s superclass is defined by (the send to itself of the
message) CombinatorialParser and so on up to Object. These classes are
computed lazily and cached. Thus we have the class hierarchy inheritance.

The point is that because a class sends its superclass name to itself, it can
override its superclass method and redefine itself. A class has no idea who
its superclass really is: it is just a message send which can have different
implementors at different times like any other message. Thus every class
must be defined as a mixin and can be used as a mixin; it can be in different
hierarchies in different contexts.

Q(Christian) What about tools; who sees all the objects as opposed to a
scoped subset? The appropriate mirrors would allow it; most users should
not have those mirrors.

Now we can understand nested classes. Classes are nested per instance of
the class, not per class. (Needless to say, this is not the way it is in Java !)
There are backpointers from a nested class to its instances and the instances
know about their enclosing objects. Understanding this is key to
understanding how method lookup actually works in Newspeak.

In the absence of an explicit receiver, we send a message to the activation
record of the send. Accessors get sent to the implicit receiver self but a
message like BlockContext is sent to the slot which is inherited from the
enclosing object, so we have to know AlternatingParser and its enclosing
object. Method lookup goes up the receiver inheritance chain as in classical
Smalltalk but at each point in that chain it goes up the lexical scope chain,
going to the next super only if no match is found in that lexical chain. The
lexical scope chain starts from the activation record and thence looks in the
local class, then the local class’ superclass and so on, eventually reaching
the local class’ Object. Then we go up the receiver inheritance chain: the
superclass looks in itself, then its local superclass and so gets to its Object.
This continues till an implementor is found or until DNU is reached.

Although this sounds complicated, that is just the complexity of explaining

Shared Keynotes 9
it. When programming, it is obvious because as you program the lexical
scope is right there. (Vassili compared it to the difficulty of explaining to a
newbie Smalltalker how super lookup worked as against the ease of using
super in code and understanding what the effect would be.) A necessary
consequence of this scheme is that the machine has to know the enclosing
object to figure all this out.

Explicit receivers are different: they do not walk the lexical scope. Suppose
we were explicitly calling self Dictionary. If Dictionary were not
defined in this inheritance tree, we would walk to the top of the inheritance
chain of implicit receiver self - without walking the side chains of lexical
scope - ending on DNU if it is not found. The effect is that changes in
supers do not get captured, unlike Self or Beta.

Module definitions are objects. An instantiated module is deeply
immutable in the module’s main: method. The mirrors you are assigned
will be the ones you get.

So modules are well isolated; so, how do we hook them together? He
showed a slide of an Object literal (which they have not implemented yet;
they do these in Smalltalk workspaces today):
Object
private class MyApp platform: p args: args {,...}
public main: platform {
MyApp platform: platform

args: platform commandLineArgs ...

This is like C but without pointers back to loads of places so it is
sandboxed. Thus you link your modules at runtime when you start up. His
slides show an example for CombinatorialParser, with grammar, parser
AST and other Newspeak libraries linked explicitly via the modules’
factory methods.

Interoperability: don’t you just love explaining primitives to non-
Smalltalkers. Everything is a message so are primitives messages? Well,
sort of; it can sometimes be hard to say what the receiver is. Newspeak has
no primitives. Instead you send a message to the VM object reified via a
mirror (so not everyone can invoke every primitive). In many languages,
primitives are just foreign calls; in Java, for example, you call C to access
some VM features. This is wrong: these ideas are distinct. The VM is not
just another language. (If you do things right, the VM will ultimately not
even be written in another language.) Your primitives should know all
about your data. In Smalltalk, it is the other way round: calling foreign
functions is usually a variant of the primitive syntax, often an ugly one
since it was an afterthought.

In Newspeak, you send a message to an alien object, e.g. a DLL (Niall:
pretty scary alien that one :-)). Specific APIs may map to particular
‘planets’ from which groups of aliens may come. Thus they can do e.g.
portable native GUIs. (Current Smalltalks either emulate or do something
very low-level, e.g. Squeak’s bitmap, or are very specific to the dialect and
the host OS.)

10 Shared Keynotes
This lets them run portable native GUIs; he showed a vista GUI (“it runs
because the licence happened to fall into my hands” but is a little flakey).

The team is 4 people (Peter Ahe, Vassili Bykov, Yaron Kashai and Gilad)
plus Eliot Miranda (emeritus). If they had the planned current team of 5,
that would still be few people to do all this. The main thing they lack is
libraries; until they are there, Newspeak is embedded in Squeak for better
or worse. Squeak was a great place to start. Newspeak no longer runs on a
vanilla Squeak VM. There will be some tweaks to syntax and semantics.
They aim for public release under the Apache 2.0 licence.

Q. Versioning? See his talk on YouTube. In the long term, he aims to rid
the world of versioning.

Q. Syntax of Newspeak is extensible? No; he is not a fan of extensible
syntax. He will stick with Smalltalk where its syntax adds something and
yield to ‘marketing’ pressure where it does not (e.g. character literals).
Newspeak is the only project he knows of that actually uses its parser-
combinator library for its language, as opposed to just writing papers on it.

Q. Developer’s doing maintenance may need to know what the superclass
is? Well, Smalltalk does not tell you what a message send will bind to. A
Fortran programmer would probably say ‘I need to know’. No, they need
not to know. Q. How do I know what messages my superclass implements?
Same answer: you don’t ‘know’ what messages the return of a message
send understands; this merely puts super in the same state.

Q. Funding? It’s been easy to convince people to fund this and open-source
it afterwards. It addresses issues that people care about and where
Smalltalk has weaknesses (and other things have great weaknesses).

Q. Security? Security has to be there from day 1 or it is never there. It is
your machine you connect to the internet. This runs on Squeak so of course
is not secure but it is an architecture which makes it possible to build
systems that are secure.

The above is how they solve issues that were known in 1980 but not
addressed by Smalltalk. The world has also changed since then; now we
have multi-cores and the internet. Actors (known in 1972) and functional
programming are a natural fit to multi-core.

(Q. Have you thought of E’s concurrency model? The project has not yet
actually done anything on this. Gilad expects what they do to be more E-
like than Erlang-like, and to be actor- and FP-focused. Newspeak is already
very near FP, differing only in areas like initialization and similar.)

In the age of the net, everyone talks about cloud computing. Clouds are
vapour and, having reached the end of what has been implemented so far,
he is adding his bit of vapour at the moment. Cloud computing is about
delivering software and maintaining it over the net. Javascript is the
assembly language of this idea and the web browser is its excuse for an

Shared Keynotes 11
operating system. Using these is like going back to 1970s timesharing or
later X-terminals.

Web apps have their downsides. The system software has to be local, UI is
the web browser (!), the network had better be reliable, fast and cheap, and
session expired is the reboot of this world. Gilad does not like rebooting.
As he sees it, if you need to reboot please be discrete: surely you can do it
in 300ms, below his threshold of perception. Instead, his phone now
reboots and his television is starting to reboot!

The cloud model means the ISP is providing your computing power so they
are driven to session-expiration and similar low-level computing tricks to
do things like save their electricity bill (yes, seriously; talk to people in this
business). There are very good reasons for pursuing solutions that use your
local computing power. But the good thing is that users cannot go to
Google Earth and say, I liked your 2003 web page so you must maintain
that till the end of time. The great thing is, users don’t even realise they
can’t ask for this. The best solutions are when the users can’t even
formulate the stupid question.

Maintaining the software and the data on the server provides audit trail.
Having modularity gives you well-defined units of deployment, helps hot-
swapping over the net. Some people in the Smalltalk world are already
doing things of this kind and Gilad aims to make it reasonably pleasant.

State of Newspeak today: the language will evolve and may become less
Smalltalk-like in some syntax: it will definitely keep keywords but might
throw in some curly braces. The implementation is incomplete, especially
the libraries. They don’t yet have a native GUI on Unix.

Generally, they find a good synergy between Newspeak’s elements:
message-based programming, object capability, modularisation and virtual
classes / mixins, mirror-based reflection.

Q.Syntax changes: make them settable? It is a possibility. Gilad does not
trust the user to change the syntax but might allow consistent syntax
schemes with the user choosing between them. He shudders to think what
Ruby programmers would make of it if left to themselves. :-)

Q. Lookup approach: are messages distinguished? Messages may be
automatically defined from a slot or by the user in various ways. If you
have separate namespaces for different kinds of message instead of having
a single lookup and namespace, well, Gilad spent 10 years in a language
like that. :-/)

Q. Lexical scope understandability post-hoc when methods have been
added to superclasses? Beta and Newspeak both find it tricky to explain the
mechanism briefly but Beta found that it did what users wanted and he
believes Newspeak will find the same. Ask him again when he has a
million users.

12 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
Q(Georg) class extensions? Eliot liked them too; Gilad does not. See his
blog post ‘Monkey Patching’. he does not expect everyone in this hall to
agree with him. He sees class extensions as tending to create classes with
many methods and noone responsible for coordinating them so it becomes
harder to know what will happen when you load. Of course, the system is
open-source and people can change things.

Q(Colin Putney) Implicit receivers versus explicit receivers? In regular
dispatch, the receiver is fixed. In implicit receiver, lookup must determine
from the lexical chain who the receiver will be. It is not done for some
specific set of reasons; it is done almost all the time for almost everything.
They also have super send and sometimes you send to another object but
implicit is the norm. Thus lexical gets priority because lexical is what you
can see. If there really is a conflict and you really want inherited, you write
self or whatever

Q. Performance aims? Their baseline aim is Squeak performance. Naive
implementations of implicit send lookup can hit performance; they have
now optimised that. Super cannot be bound and Squeak does not do a good
job of their implicit super (no Smalltalk would, he thinks).

Q(Georg) What is the big picture? Making it easy to write applications that
run locally but can easily be updated over the web. Gilad got people to pay
him to do this by concentrating on that. Beyond that, it will be open-source
and where it goes he knoweth not.

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
Seattle being a well-placed hub for travelling from Heathrow to Reno, I
visited friends in Seattle the day before the conference. On Wednesday, Sue
dropped me at the airport for my morning flight and drove off to her work
as a coastal engineer - after which I realised that the small pouch with my
cards, my money, my passport, and all means to identify me was still in the
car with her. Having no means to reach her and get it back before my flight,
I presented my self to the homeland security desk as a mad Englishman
who forgets things and asked them to take pity on me - which they
generously did. I was sent through ‘special search’ and for all I know now
figure on some database, but I got to Reno. Travis kindly guaranteed my
bill to a doubtful hotel check-in lady so I got a room (and Sue faxed my
passport details to the hotel the next day to reassure them). Adriaan and
Sytske lent me some cash. Luckily, I had arranged to fly back to Seattle and
see my friends again en route home, so reacquiring my passport before
attempting to leave the US was easy. All in all, it was the most painless
‘arrive at airport without identification’ experience I can imagine, but I
shall avoid repeating the experiment.

Summary of Presentations
I have sorted the talks I attended into various categories:
• Keynotes
• Experience Reports

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 13
• Tools and Process
• Aida and Seaside
• BoFs and the Coding Contest
after which I describe Other Discussions, note some Follow-up Actions
and give my overall Conclusions.

As each afternoon had two tutorial tracks and two talk tracks in parallel, I
could not attend, still less report on, all I wished to see. (Some choices
forced by the schedule were painful, but luckily James Foster’s go-at-your-
own-pace GLASS tutorial allowed me to attend it and Vassili’s talk and
Georg’s talk). James Robertson’s blog posts cover some talks I missed, as
do those of other bloggers, and recordings of the talks will be posted. Talk
slides and video can be reached from the STIC website http://www.stic.st.

Keynotes
Interfaces without Tools, Vassili Bykov, Cadence Design Systems
(This talk follows naturally from Gilad’s in the Shared Keynotes section
above, so is put here in ‘Keynotes’ even though strictly speaking it wasn’t.)

Vassili started by doing something magical which he did not explain (it
would take half the talk), so opened something that looked like the standard
5-pane browser.
browser := BrazilClassBrowser new open
morphicDesktop := browser window desktop.
windowDesktop := ...

He moved the browser from the Morphic desktop to the Windows desktop.
He showed that while its state was preserved from what he had selected in
Morphic, the browser widgets were now true Windows widgets. He then
did:
windowsDesktop remove: browser.
morphicDesktop add: browser.

It reappeared in Morphic and he opened halos and showed doing the things
you can do in Morphic and not in Windows.

He calls the widget framework Brazil because he feels the movie has many
references that could easily be applied to software, and is in keeping with
the (Niall: slightly unfortunate, to my mind) 1984-theme Newspeak name.
Morphic is just one of the native libraries from the point of view of Brazil.

That was all on Brazil. The talk was about Hopscotch. The Squeak browser
in is quite like the first one created in ‘76. The structure of objects in
Smalltalk is 4 levels deep (categories, classes, protocols, methods) so the
browser did not change much because it was a good fit to this.

In Newspeak, classes nest. Thus you need an N-pane browser similar to
TrailBlazer and suchlike; he sees this as a sub-optimal solution. More
seriously, the browser shows you one method at a time but exactly while
you are coding one method is when you need to look at other methods.

14 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
The hopscotch browser deliberately looks very like a web browser. It has
buttons along the top left, a search box at top right and then panels for
Navigation, Recently Visited entities and Did You Know.

He went to the demo package for this talk and created a class: click button,
see template, edit. He went to other places then returned and saw his class
template edited as he had left it. The created class showed its name in a list
with number of methods and number of subclasses tab-listed to its right.

He clicked on a class and showed its comment, definition, instance
methods and class methods listed in vertically-arranged panels. Some
ghost methods - subclassResponsibility in super class indicated method
was needed - were shown.

He jumped to the Collection class and showed the methods being annotated
(one by one, took a few second for them all) with icons / numbers for how
many senders each had and similar. There is an icon for whether there is an
overridden definition; click on it and you see the local implementors view.

Vassili likes using just one window and navigating around and back to see
the views you want.

All this has been standard Smalltalk. He then went to a Newspeak class
StS2008Demo and showed in the definition how he was importing and
renaming.
Slots
Presenter = platform Hopscotch HPresenter
...

He then got panels for File and its subclass Folder under the StS2008Demo
definition panel and added methods to these two classes to enable the
StS2008Demo to show files of demo information. He created a demo
object and sent it one of these methods (exampleDirectoryTree). He
briefly presented the Presenter/Subject paradigm: Presenter is like an
application, Subject like an implementor of an application.

He created a class FileSubject and noted there were no ghost classes
because we did not yet know its superclass; that can be bound later in
Newspeak than in Smalltalk. He then created FilePresenter and gave it a
method definition that called the non-existent method file, for which
another panel promptly appeared. (Nothing of this is modal: Vassili can go
elsewhere and return to find it as he left it.) He was now working on two
methods at once, their code stacked vertically in his single window. He
saved and opened a window that showed the FilePresenter on the top of
directory tree, i.e. on /.

In the definition method he then added
...
row: {
label: ‘Name’.
label: file name}

...

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 15
and showed the file presenter window redisplaying to show Name: /. (Add
on package adds {} array constructor). A bar of colour on the right of a
panel indicates when things are being edited (i.e. dirty in DB terms). He
made the FilePresenter clickable. He added
private Color = platform Graphics Color

Alas, Newspeak is still work in progress and so he had to reboot (Sorry,
Gilad) to make this binding visible. Now he can make the FilePresenter use
colour. Georg asked whether that was Newspeak or Smalltalk. Objectwise
it was both, one messaging the other; syntax-wise it was Newspeak.

He added ‘inspect me’ and ‘browse me’ buttons to the FilePresenter. The
latter demoed getting a reflection mirror using sendUp navigatorDo:...
where sendUp walks the hierarchy of widgets. He then combined these to
show an inspector when collapsed and a browser when expanded.
Thus we no longer have a tool. We have Presenters within Presenters that
reflect the structure of the domain in the structure of the window internals.

Thanks to Peter Ahe, Gilad Bracha, Eliot Miranda (emeritus) and Bob
Westergaard.

Q(James Savidge) Newspeak version control? Vassili is not really the
person to answer that.

Q. Return from method and return from block? Just like Smalltalk.

Seaside: Your Next Web Framework and Persistence Solutions for
Seaside, Randal Schwartz, Stonehenge Consulting
Randal gave the first of these two talks two months ago to 7,500 people in
Brazil. They gave him a 3-day Smalltalk conference as a result,. So he’s
repeating this talk to us, though many of us know all about Seaside, to show
ways of explaining to outsiders why Seaside is good.

Randal likes Smalltalk because it is very simple to learn: the entire syntax
can be shown in 2 minutes and explained in 20. All the libraries are open
to you to show how to code and to extend. Smalltalk has been around for
20-30 years so it has extensive, mature, robust material.

It has very mature debugging. The walkback stack is alive: it’s not like
doing an autopsy on a dead body on a table. When you mix that in with the
web framework you get intra-hit debugging. Fix and resume your web
session. Randal was interviewed on web radio two weeks ago and as James
put it later, “You could hear the guy’s jaw dropping” as Randal explained
this. (After seeing Dale’s talk on GLASS, Randal realised that he could
also persist these errors and e.g. debug errors that happened last night.)

Smalltalk has good unit testing. The Smalltalk community invented
eXtreme Programming.

Seaside uses Smalltalk for the templating language and this is very

16 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
expressive. (At this point he would show examples but he’ll assume this
audience knows Smalltalk.) You paint on a canvas with a brush using
objects, written in ordinary readable text, from which you naturally
generate sane HTML. Smalltalk refactoring tools also make improving
your code easy.

You have a choice of vendors. He reviewed them. People used to Ruby or
Perl find this a good point.

Team development environments are Smalltalk-aware, so powerful.
Squeak and GemStone have Monticello, Cincom has Store, VASmalltalk
has Envy. They can all file in and out if you want to use files but you won’t.

Continuations: Seaside maintains the inter-hit state transparently. You
write your app as if the web is uninvolved.
self firstPage.
[self validate] whileFalse: [self secondPage].
self thirdPage.

html anchor
callback: [self exit];
with: ‘exit’.

html textInput
callback: [:value | e := value];
with: ‘exit’.

This handles the back button. It provides you with callbacks. It saves you
form having to name all your parameters.

Persistence (more in following talk): you can use object-relational mapper
frameworks of which GLORP is the most obvious. Alternatively you can
save as objects with Magma (watch this tree and save when I change it),
Squeak reference streams, or of course GemStone for very easy, very
scalable, very mature pure OO persistence.

Seaside has a large community doing active development, lots of add-ons
like Scriptaculous and a free hosting site seasidehosting.st.

Get this talk from MethodsAndMessages.vox.com and give it at bar camps
or web user groups.

That ended his first presentation. Then he spoke on persistence in
Smalltalk. Randal only recently reentered commercial Smalltalk after
many years (but he first executed a doIt in 1981). His first Seaside app for
hire was deployed last month. He has also done a lot of Seaside advocacy
(which is fun but does not pay as well).

Randal then talked about licensing. He has nothing against the GPL or
LGPL but be aware that it can block anyone else’s use because subclassing
could be regarded as derivative work. However it is a non-issue for web
servers which you are not distributing. (Niall: but you must then be careful
never to distribute to anyone who might want to exploit their GPL rights.)

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 17
His perl experience is that with friendlier licences he can arrange to write
a system, give back some code but leave the key parts with the customer.
Alan mentioned that Glorp, which is under the LGPL, explicitly ‘clarified’
how Smalltalk code should be handled, excluding such ideas.

Persistence requires you to understand both reachability and migration.
Over time, classes acquire new behaviour and instance variables and also
change these. Do we tell everyone to re-login to our website or do we take
people with us. Some persistence schemes deal with these; others ignore it.
Persistence means dirty objects; do we have to notify or will our solution
handle it automatically.

Thus we have various strategies in Smalltalk. Saving the image is easiest
and of course gives us most problems re the above issues. We can serialize
objects in and out. We can access a non-Smalltalk database directly or
through an OR mapping layer. Finally, we can run in an OO database,
persistent from the start.

Randal showed the simplest code to save the image every 5 minutes. You
could be saving an image you could not restart so it’s better to save it with
the timestamp in the name. This is good enough for e.g. a small blog server;
few people will be furious if their last five minutes of blog typing has to be
reentered when the occasional crash catches them.

Serialization is simple if file-based. Randal also knows a couple of server-
based solutions, better for clustering.
(ReferenceStream newFileName: ‘blog’)
nextPut: self allPosts.

...
allPosts := (ReferenceStream oldFileName: ‘blog’
contents.

The above is from Ramon. Avi also told him about storing part of the live
image on the disk. Avi is using this for DabbleDB but Randal looked for
documentation and failed to find much. If you see Avi, ask him how it
works (and tell Randal).

SIXX converts objects to and from XML via asSIXXString. Randal is
no fan of XML but observes that you can use code very like the above:
(SIXXWriteStream newFileName: ‘blog’)
nextPut: self allPosts.

...
allPosts := (SIXXReadStream oldFileName: ‘blog’
contents.

Be aware that SIXX streams do not inherit from the main stream hierarchy
and only have some of the stream API methods implemented.

OmniBase does not load into Squeak 3.9 or 3.10 and he could load it but
not make it run in 3.8 so perhaps it is no longer maintained. He liked its
general multi-transaction design but disliked that all dirty objects had to be
explicitly marked. Unless it is being maintained, it had best be left.

18 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
MinniStore is incompatible post Squeak 3.4 and the tests fail on 3.8. Its
SqueakMap entry teases you with cool things like ‘English-like query
language’ and ‘multiple indexes’ but don’t go there till someone tells you
its running again.

Server-Base solutions are more complex to configure but also more
scalable. The two main players here are GOODS and Magma. Goods is
language-neutral; he even found a CPAN Perl binding called Pogo. You
have to configure a server in C++, not ideal. Persistence is by reachability
and it notices dirty objects automatically. All this is good but commits may
conflict in which case exceptions are raised and objects get updated in
conflicting ways, which concerns him.

Magma is local single-user or clustered multi-user, is ACID and handles
large collections. It does live class migration with some tools. However it
seems to be a one-man development project (others use it). It cannot be
vacuumed to reclaim old storage while clients are connected, so this blocks
24 x 7 use. He likes its transparency for dirtying objects. Commit is just
reaching the end of the commit block, rollback via raising an exception.

There is a package, by someone whose name he forgets, that combines
Magma and Seaside by adding WAMagmaConfiguration. So your
configuration pages have an addition screen to configure server location,
connection type (single, shared, pool). So except for the 24 x 7 and one-
man operation, he likes this best.

There are also interfaces for SQL DBs.

SQLite is indeed light and fast. It is small enough that you can embed
SQLite in your app but the Smalltalk wrapper does not do that; it uses FFI
to talk to native SQLite lib. But he cannot load it into Squeak 3.8, 3.9 or
3.10. (It works fine on VW and Jim’s WebVelocity demo uses SQLite.)
He’s pretty sure it is a small problem, possibly due to changed version of
Monticello. You connect to SQLite library, which opens a file for you, and
talk to your connection. However SQLite does not handle placeholders in
SQL so you must be clever to escape them correctly.

PostgreSQL is similar to SQLite but much more powerful. It handles
placeholders, streaming results (i.e. getting a large result not all at once),
and events. It is mature and well built but is now slightly out of date and he
had to monkey patch it once for a customer.

ODBC he’s heard of and no more.

OR mappers are Glorp, and ROE. Glorp is a very large and uses names that
might conflict with other apps in non-namespaced Smalltalks. Its test suite
is large and educates you in it. A Glorp descriptor says what the table
contains, what objects participate and how to map them. It is very flexible,
almost too much so (needs moderate amount of work to do ultra-simple
things). Glorp lets you do really interesting complex mappings e.g. row
values can determine which objects were returned (e.g. return Manager if

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 19
manager bit set, Employee otherwise). He creates a session object from an
accessor object from a connection object from a login object - all lazy and
it all works behind the scenes. It does the trace and reachability and seeing
dirty objects stuff.

Cincom then decided to add an ActiveRecord pattern. This will build a
simple starter mapping for Glorp and then you modify as desired. The
ActiveRecord may not work on all legacy databases but should be fine for
80% of cases.

Avi provided ROE. It is under-documented but has tests. It lets you write
SQL queries as Smalltalk objects using a DNU trapper. It talks to
PostgreSQL and works but appears to have been abandoned.

The easiest way to do persistence is to do nothing at all. GemStone is this
and see Dale’s talk, Dale’s excellent blog and all the info GemStone
provides.

Q(Georg) Some things alive, some dead; what is the common factor?
Randal feels there has to be a critical mass of users and more than one
developer. In other languages, e.g. perl, he sees these as the essential
features. To get these two, it has to solve real issues adequately and be well-
enough designed to let others work on it.

Q(Niall) Your first talk mentioned which points played well to Ruby and
Perl people; what points block such people? Mostly they relate to
Smalltalk. “How do you deal with that stupid image”. He replies, “Try it
for a week and you’ll never go back.” Performance, that ancient myth, is
often raised; you just say, that is out of date (demo it). “If I start doing this
I’ll not be hired anywhere because there are no Smalltalk jobs.” However
the enthusiasm about continuations and debugging intra-hit gets people
past this. He taught a 3-day perl course and in spare time at the end offered
a seaside half-day. At the end people asked him, “Why did we spend the
last three days learning perl?”

Q.(James Savidge) Niall and I are doing work on the Smalltalk database so
point them at it and maybe they’ll think there are some ST jobs.

Go to seaside.gemstone.com to locate Dale’s blog.

Q(James) Does anyone ask about security? The only questions are about
Denial of Service attacks using old session states.

Q(Colin) OR mapping is hard - he wrote one as his first Smalltalk project
- and so it is natural that many have been abandoned.

Implementing Programming Languages for Fun and Profit with
OMeta, Allessandro (Alex) Worth, Viewpoints Research Institute
Alan Kay heads Viewpoints Research. Alex works there on the ‘Steps
towards the Reinvention of Programming’ project which seeks to build a
whole personal computing environment in 20,000 lines of code. That is

20 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
almost an order of magnitude smaller than Squeak (don’t mention the 40
million lines of Windows XP). The aim is to put people in charge: noone
can understand 40 million loc but 20,000 lines is a 400-page book; a person
can own that. Another aim is didactic: university students could study it
and learn about architecture. They could even learn it instead of Java. :-)

STEPS cares about code size and understandability. Choice of language
can affect that a lot. So what language should STEPS choose, and should it
be just one or several for the different part of the system? They don’t know
the answer so they must experiment. However it takes a lot of time to
implement a programming language, taking time from experimenting with
it once built. Another problem is that traditional programming languages
are big and they only allow 20kloc for the whole thing; the programming
language had better not take too much of that. OMeta is a way of
implementing programming languages that is quick and small.

He introduced his examples with an ‘Ometa Inside’ logo complete with
tune. His first example was an Ometa/Squeak implementation that
generated Javascript: 300 lines with parser and all else. He showed
javascripts controlling a morph and a lego game.

Ian Piumarta is developing COLA, a new STEPS-oriented environment.
His slide showed some things done in 350 lines of code running on Sun’s
Lively Kernel. A Javascript program in a text morph evaluated on the fly
to generate a spiral pattern.

They also looked at Prolog ideas, but with syntax focused on non-
programmers. Alan Kay suggested Toylog, a front-end for Prolog that is
written in very English style, implemented in 70 lines of OMeta:
Homer is Bart’s father.
Marge is Bart’s mother.
x is y’s parents if x is y’s father or x is y’s mother.
Bart’s parents? -> Homer, Marge
x is y’s grandfather if x is z’s father and z is y’s
father or z is y’s mother.

etc. The Squeak-based program that runs it lets you ask such questions and
shouts the answers in excerpts from the Simpsons, complete with cartoons.

Alex thinks the computing community splits into programmers and people
using computers who are not programmers. A goal of OMeta is to create
good domain-specific languages; these come from people who need them,
not from programming languages. Another goal of OMeta is to make your
apps scriptable by end-users without their having to learn Smalltalk, let
alone any more ugly language.

So much for motivation and goal. Next he presented OMeta in detail.
Traditional programming language implementations (Squeak is an
exception) use a kind of batman utility belt of specific tools for specific
tasks: lex, yacc, AST transformation and suchlike tools are used to do
specific things. This cannot work for their case. In OMeta, lexical analysis
of characters to tokens, parsing tokens to trees, folding parse trees to parse

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 21
trees and generating code from parse trees are all examples of the same
thing: pattern matching. Using pattern matching for everything makes it
simpler to build, easier to learn, and more extensible.

Other languages have pattern matching: what does OMeta offer. ML-style
pattern matching is great for tree rewriting and poor for lexing and parsing.
OMeta uses a Parsing Expression Grammar (PEG) [Ford 04] which is a
good framework for writing recursive descent parsers. A recursive descent
parser’s ‘or’ is ordered. This eliminates ambiguities and makes the parser
easy to understand (no SHIFT REDUCE conflicts). Backtracking and
lookahead work better and we get semantic predicates. (?[x == y] means
make sure x is equal to y; if not, fail this thread).

He then showed BNF for a language (called MyLang) defined using OMeta
dig ::= $0 | ... | $9:d => [d digitValue]
num ::= <num>:n <dig>:d => [n * 10 + d]
expr ::= <expr>:e $_ <num>:n => [{#plus. e. n}] | <num>

PEGs operate on streams of characters. OMeta extends that to operate on
streams of objects. anything matches any one object; shorthands to avoid
using it everywhere let them write ‘hello’ strings, #ans symbols, etc.
He showed an example:
eval ::= {#plus <eval>:x <eval>:y} => ...
{#plus. {#plus. 1. 2}. 3} -> 6
He extended MyLang to MyLang++ that understands minus as well using
standard OO super
expr ::= stuff to do - instead of + | <super expr>

This is an example of what he said about extensibility. We use the OO stuff
we know to extend. He then showed parametrised rules looking very like
Smalltalk blocks
range :a :b ::= ...

You can have higher-order rules. You find yourself writing stuff like
formals ::= <name> ($, <name>)*
args ::= <expr> ($, <expr>)*

over and over so you’d rather write a listOfP higher order rule instead of
defining comma separated lists in longhand all over the place.

If we have an OMeta parser and a JSParser and only single inheritance,
how do we write an OMetaJSParser. Inheriting from either forces you to
clone the features of the other and later we’ll change the other and our clone
will be out of synch. Inherit from both? But we may have clashes when the
same name has different meanings in the two languages. So instead they
offer foreign rule invocation. You can lend your input stream to another
grammar: “I can’t parse this; you try”. This lets you compose grammars.

There are several OMetas: OMeta/Squeak (and someone ported it to
OMeta/VisualWorks), OMeta/COLA, OMeta/JS, and others are being
built. Each one has syntax fitted to its host: OMeta lists in OmetaJS look

22 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
like Javascript lists.

Takashi Yamamiya has done stuff in Smalltalk. He used Squeak to write a
Javascript executing web page and this inspired Alex to write OMetaJS.
Javascript is not Smalltalk but it is late bound, has properly closed first-
class functions and so on. Above all, it is everywhere. You can treat it as an
assembly language: you don’t have to program in it, just target it for code
generation. (Douglas Crockford’s book ‘Javascript: the good parts’ gives
excellent insight into these issues.)

He opened a browser on the OMeta/JS web page. It reminded me a little of
Carl Gundel’s RunBasic pages. You type Javascript into the pane and
evaluate it as if the pane were a smalltalk-style workspace. He sees no need
to waste such a neat idea on Javascript so has some indirection between the
code you type and the code that gets executed. He made the printIt, doIt
invocations pass the string to the translator which is the OMeta and JS
union he discussed above. He wrote a trivial OMeta rule to show it
matching. He then went to pages with successive developments of a simple
language definition and used them to recognise expressions, to evaluate
them, to compile them, etc.

He then showed a library of 70 lines of code written in Javascript that
implements the semantics of Prolog. However to use it you must write very
ugly code (he showed the code for his Simpson family definition and it was
indeed horrible). With OMeta, he took 12 lines to write an incomplete
parser for Prolog that put a pretty face in front of this stuff.

He then showed a Logo OMeta program drawing a spiral on the page. Then
he showed a source-to-source Javascript compiler. This is just an identity
compiler of course, taking a JS program to a JS program but it is a start
point for writing extensions to Javascript. He added a say() feature to
Javascript, made the window use the new language and showed it handling
say(‘Hello’), then changed it back and showed it reporting an error.

Alan Kay taught a course on program design. Alex prepared an example of
language bootstrapping for this course. It bootstrapped a language like
OMeta, defined a compiler for the language in the language, showed the
new compiler parsing correctly, then recompiled the compiler in the new
language and so completely bootstrapped the language. The students liked
this and some, for their projects, extended OMeta and tried things out.

His last example was called Etude. Some students in the class, first year
grads who had never written a compiler before, wrote a programming
language to describe music, generating midi files from ‘code’. He
compiled the code for happy birthday and (after the usual demo hiccough;
he was so near the end I almost thought he wouldn’t have one) it played.

He visited a friend with a Wii and discovered that it has a web browser
(Opera) and OMetaJS works there too. Javascript really is everywhere. :-)

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 23
See the DLS2007 paper or visit
• OMeta mailing list: http://vpri.org/mailman/listinfo/ometa
• OMeta JS Wiki: http://jarret.cs.ucla.edu/ometa-js
Q. Where did the name OMeta come from? From Meta2, a 10-page paper
that changed his life.

Q. How up-to-date is the VW implementation of OMeta? (Jim Robertson)
The latest publish to Store is May 27th. (Alex) that is recent but Squeak and
will have the latest and greatest soon. Masashi Owosama is helping.

Q(Georg) relation to general parsing work / research, specifically declare-
before-used variable declaration? This is more expressive than many
things used today for industrial strength applications. It is more powerful
than context-free grammars. Variable declaration in Javascript must handle
its complex scope rules. He handles this in OMeta by having visitors that
find and decorate the parse tree in multiple passes over the same data.

Q. Tutorial on the web? Yes: google Ometa/JS 2.0 and find the tutorial on
the website.

Javascript has a bigger grammar than Smalltalk. He had written Smalltalk
and JS parsers before. This time he implemented a translator from
Smalltalk to Javascript. His first workspace understood Smalltalk and then
he extended that in OMeta to understand Javascript.

Experience Reports
Porting VW5i/Envy to VW7/Store, Tom Hawker, OOCL
OOCL are a shipping company (see my report of Tom’s talk at StS2006 for
a detailed description of its domain). The port is ongoing and has reached
the point of its core being handed to QA for acceptance testing.

The application is over 10 years old and was originally ported from Cobol
to VW3/Envy thence to VW5i/Envy. The rich client is very complicated
and has 100 of screens used modally and non-modally. The tasks that
define bookings and eventually produce bills of lading are very complex.
They have 2000 users on-line at a time.

They want to port to get back on supported software, to get performance
benefits they have noticed in VW7, and to get refactoring tools and other
benefits. However there is a big cost: they expect it will take 18 months
total elapsed time from the three staff (all at the talk) that work on the port.
Some costs are also benefits. They have doubled the number of tests in
order to make the port safe.

They had to resurrect from old emails the directions to old websites where
documentation actually resides. Some release guides had useful hints and
they used the refactoring browser rewrite tool to find and change code that
used VW5i patterns to code that used the equivalent VW7 patterns. They
wrote a utility, called Topping Lift (Niall: I deduce someone on the project
has a yacht), to move code from Envy to Store (StoreBridge was useless).

24 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
Smalltalk lets you look at a city skyline, raise it two inches, replace all the
subsoil, drop it down again and have it look the same. Their goal was to
have no changes in either application and server code and except for things
like immutability, found by Refactoring Browser: this goal was achieved.

A Harry Potter book mentions a cursed book you can’t stop reading; at
times they feared they would suffer the curse of unputdownable code.
There was no OSKit upgrade or equivalent (or suitable GemKit then, alas
Paul’s work was not then available). Envy is not Store and breaking Envy
users of Envy habits is also hard. Murphy’s law was a concern: throughout
the code, they discovered that Murphy had been involved in its location.
Column sets were modified in place to make specific windows do things
the application needed and porting forward broke that.

They knew that a rewrite of GemKit was inevitable given its state when
they started. OOCL has a policy not to use open-source software, so they
were obliged to rewrite GemKit from scratch. They went to a memory-
based comparison model and reduced a six-hour build to less than one hour.
They added heavy instrumentation which slows it but lets them study what
they are doing. They had to map interface behaviour. He showed slides of
the architecture of their GemKit implementation, and a collage of its
windows. The VW-side drives the Refactoring Browser to change the
image. The windows show hierarchies of changes.

Store as it is does not fit their new agile/incremental development process,
which aims to manage parallel disparate developments. However blessings
were easy to change to match their development process. They then made
it possible to label bundles with a tag or group of tags; prerequisites only
match for tags specified or derived from the development. They found
Store admin groups too primitive to control this mechanism so rolled their
own re who was allowed to add or use tags. A slide showed all the changes
to Store they made. Another showed a collage of windows: the four on the
left were standard store windows with their additions, the others new.

The port has taken 9 months elapsed so far (not continuously worked on,
they have other things to do). The server code works fine, their frameworks
are sadly broken, their GemKit does one-third of what they want it to do.

Lessons learned. Noone follows their own development processes: the
guidelines say use the framework this way but people use it that way, so it
breaks when you port it. Envy does atomic loads that saves you from many
pre-req errors. Store does not and working out why a load failed is not easy.
Topping Lift was written to solve this for them.

Vendor issues. Store did not come from Cincom, it came from Andersen
consulting, so he has no inhibitions about being frank on its having some
poor, rigid code and absent or unhelpful documentation.

Murphy and his children have bigger class libraries than Jim Robertson and
are impervious to bullets.

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 25
Q. Can you make your work on GemKit, etc., visible to the community,
given that open-sourcing is not an option? Originally, OSing was the plan
but Hong-Kong may not be open to the idea. They may be able have
GemStone or Cincom cast a vague protective shield over its appearing in
the Open repository or similar.

Using User Changes, Leandro Caniglia, Valeria Murcia, Caesar
Systems
(This talk was also presented at ESUG; this write-up merges information
and questions from both presentations.)

Leandro presented but explained the paper is in fact almost entirely the
work of his wife and colleague Valeria with occasional help from him. The
smalltalk change system has a few stable commands (add class, method,
...). A living application has many, changing commands.

In their system a composite pane contains a wrapper round its model
object. When it sends a message to its model object, the wrapper logs the
message and passes it on. To the user and the programmer, this mechanism
is transparent. Only messages that change the model are logged.

The wrapper logs by creating a Change object which reifies the message.
The Change validates itself; in debugging mode, the user gets a warning if
this fails. Validated changes get added to the appropriate change collection,
which can be written to a file for replay.

Changes know their timestamp, author, message selector, receiver name
and arguments. Validation checks that these are non-nil and non-empty,
that receiver names resolve to an object that responds to the selector, and
that the appropriate number of arguments for the selector are provided.
Their mechanism for naming objects uses names like a:b2:c2 to trace
from root object a to b2 and thence to c2.

ModelObjectWrapper has nil superclass. It knows the object it wraps and
its changeLog. Their first thought was to have a wrapper class for each
class in their GUI but this merely duplicated their existing class hierarchy.
They soon realised they only needed one object that recognised all
messages in the GUI and sent them all to the wrapped object.
doesNotUnderstand: aMessage
| selector |
selector := aMessage selector.
self shouldBuildMethodFor: selector)
ifTrue: [self buildMethodFor: selector]
ifFalse: [aMessage receiver: wrappee].

^aMessage perform

When a new message is first generated, the programmer is prompted to tell
the system whether this message changes the model or not (if the question
makes sense; they keep a list of many messages for which there is no need
to ask). If the user says it does, the wrapper acquires a new message, e.g.

26 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
oneArgSelector: arg
changeLog newChange
receiver: wrappee
command: #oneArgSelector:
argument: arg.

^wrappee oneArgSelector: arg

He showed this in the browser for the renameTo: method.

The system therefore has a single ModelObjectWrapper class, a single
Change class, a single UserChange class and a single ChangeValidator
class. Most methods are automatically generated so the framework is very
lightweight, development-wise.

Their interest in changes of course is not to log them but to replay them.
Leandro restarted their system with an empty project, showed it was empty,
reran the changes and showed it had the same set of objects.

Changes filed-in are always validated (they are coming from a file that
might have been edited, corrupted or whatever) and the user is always
warned if validation fails. They send the replied mechanism to the wrapper,
not the receiver, to replicate the precise behaviour, including the logging,
that created the change originally.

Having outlined the system, Leandro discussed applications. They can
replay their work whenever needed. They have auditing; you can see who
did what, and also what changed recently in a model. You can right-click
on an object and get the list of commands sent to that object. You can go to
any part of this history and replay the change; this can be used as a kind of
local undo/redo. He showed entering some data on a form and accepting,
then changing his mind, getting the changes and altering the input data.

You can use the change log as a scripting mechanism. The same approach
gives you demo scripts and tutorials (and trouble-free conference talks :-).

You can overcome backward-compatibility problems. If your model will
not load in your new system, try replaying its change log in the new system.
You can often fix the problems and complete this sequence.

Merging changes is easier than merging projects. If a user calls you with a
problem, and you take two days to solve it, the user will also have changed
their model during that time. So instead of sending them your altered
model, you send them your change set for the fix.

Support: you can send the user the changes that show how you tried to
reproduce a bug. They can send you the changes that elicit a bug, or just
their recent changes when they don’t know what they did to elicit a bug.
Once you have a script that shows a bug, it can be reused as a regression
test, and it will help you write a test for that bug. Scripts can also teach the
system to new programmers. Users can share patterns, ideas, etc., by
sending the changes for an example of them.

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 27
You can count the number of commands or (by multiplying by command
length) the number of keystrokes a user needs to achieve a given state. This
is a useful metric to advertise for a productive Smalltalk system. You can
also look for confusions or bad practices in your users.

Changes were once Smalltalk’s CM system. You can still use changes to
combine several people’s work on a model. Database accesses that did not
commit can be recovered from their change set. Work done at home can be
added to the central repository.

These are general uses. They have also uses specific to their system.
Scenarios can be captured as change sets and written out for later re-
examination; these change sets are much smaller than keeping a copy of the
whole project in the database.

Decision Analysis is a growing area of interest in their domain. Users can
create a base model and explore scenarios, keeping the change set for each
scenario. You can then copy the base model and apply a scenario change
set. Each scenario is a child of its base since if the base model changes,
each scenario will see those changes. This can be repeated to create a
decision tree of changes to the model, in which each parent change set has
changes common to all of its children who also have their own changes. He
opened a tree browser in their system to see a tree, annotated with the value
of interest.

They also do Monte carlo simulations.

This was inspired by the Smalltalk change log, Dan Ingall’s Squeak event
recorder and Valeria’s own work on that to include Morphic wrappers long
ago.

Q. Changes can be applied quickly (by design)? Their validations ensure
this.

Q(Christian) changes separated syntactically? Yes via Smalltalk ! chunk
separator.

Using Opentalk in an Unexpected Way, Giorgio Ferraris,
OpenTalk makes communication between two Smalltalk images easy. It
also does other things but Smalltalk-to-Smalltalk is what Giorgio will talk
about today. OpenTalk is in your VW image today. It is mature and robust.
It is a tool you have in your pocket to us. Giorgio heard talks about
OpenTalk and often thought “must use that” but never had occasion to do
so. Until ...

He had a monolithic client-server application built in the last three years to
support tour operators. It runs on Windows and Linux in VW and was sold
as “this will run wherever you want.” Then a customer needed to connect
an AS400 database and this needed ODBC. In Windows, it was not a
problem: they built the connection and it ran fine. But then the customer
wanted it to run on Linux. ODBC on Linux? It’s a nightmare!

28 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
They had to find a solution quickly. The customer had the app and had paid
for it. Giorgio was called on the Saturday by a most unhappy tester.

Can we connect from a Windows machine where ODBC is running to the
application running in Linux. Web service was not adequate. Then they
thought of OpenTalk.

OpenTalk is easy to use, Giorgio opened two images and demoed a simple
OpenTalk example.
serverBroker := RequestBroker newStstTcpAtPort 4242.
serverBroker start.
serverBroker objectAdaptor
export: Transcript
oid: #transcript.

and the same in the other image for the client
clientBroker := RequestBroker newStstTcpAtPort 4243.
clientBroker start.
clientBroker remoteObjectToHost...

His experience: OpenTalk was easy; almost too easy. Because you can get
it working in seconds, it is easy to forget something it would have been
better to handle.

He showed his domain model. DbConnection was the abstract superclass
of the specific database connections. HOPOdbcConnection was the
ODBCconcrete class and SqlTranslator generated the SQL query from the
systems request. The right place for OpenTalk was between the two of
them. In two hours, they had the new system running.

However everything was running in 2 hours so a relieved Giorgio forgot
many things. Giorgio was running 2 images on the same PC. The
developers are in Italy, the customer is in Genoa and Giorgio is at home so
errors cost delay as these different locations and times got back about them.

When you are on the same PC and environment, you may not notice you
are not handling things correctly (see ‘too easy’ comment above). You can
pass an unexpected component e.g. a system resource, that you should not.
You cannot see latency issues. So he moved to two PCs. On the same local
network, the latency is still low but now sending a local ODBC handler to
the other operating system will raise an error. He now saw that not all
methods in the monolithic system were still valid on a distributed system.
A proxy was needed to filter methods appropriately.

Next he moved to two machines with different OS, Windows and Linux.
Now filenames were being written in Linux’ way and sent to Windows; the
slash was wrong. The final try was to run over a slow connection. This
exposed latency problems that needed optimisation. If you run smoothly
over an internet connection, the task is complete.

They have a DbEngine for each database they support. The SqlTranslator
needed information from the DbEngine. OpenTalk sends references not

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 29
values except for simple types (string, number, ...) so this generated much
flow across Opentalk just to get data that was always the same for ODBC.
Passing this data by value was the answer but it was hard to find how to
make that change in OpenTalk’s documentation and he found it in a
presentation slide.

OpenTalk holds weak pointers to published objects, so remember: you
must hold a reference yourself; don’t expect OpenTalk to hold it. Giorgio
refactored away an instVar he no longer needed and could not understand
why his system now ran fine for 10 minutes or 5 or 2 and then suddenly
died (when the GC took an object he needed).

A TCP/IP port allows one client only. When the customer ran many clients
on the same Linux box, they needed to loop up to the first free port.
(Giorgio’s slide shows the code he wrote to handle that.)

When you have a hammer, everything looks like a nail. After getting
OpenTalk running in 2 hours, he started using it everywhere. He uses it for
two reasons: for scalability and because of necessity. He has other systems
where he is being forced to move to distributed systems.

They had a system running on Linux that wanted to add data (e.g. specific
addresses) to MSWord documents. They created an MSWord server image
on Windows talking by OpenTalk to the Linux system. He demoed this,
loading COM and his package for MSWord document handling into one
image, while another, without this, made requests for information from
MSWord documents. The local image used class side calls but Opentalk
prefers instances so slight changes to the API were helpful. He added the
new method openVisible (‘visible’ so we can see it; you can also do this
in background without having Word documents popping up on the screen).

He now showed how COM raised a warning when a weakly-referenced
instance dies (alas, ODBC does not warn). Then he went to the client, filed-
in a dictionary with some address values, got the remote reference and tried
to call it; it has vanished so we saw the debug window in the client
complaining that the server was denying all knowledge. Then Giorgio went
back to the server and made sure he had an explicit reference on the server
side so it did not vanish. Then it worked.

A hotel supplier they supported only has a COM interface; their web-
service interface is still being built. So they used OpenTalk to let the Linux
system talk to that interface.

Now they find they want to build an architecture on OpenTalk to facilitate
their uses.

Conclusion: OpenTalk is well built and scalable. Documentation could be
better but Martin Kobetic was always there for them.

Q(James Savidge) Any rules of thumb for when to pass by value, when by
reference? No, we just let performance drive us. If the performance bugged

30 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
us, we considered switching to value passing, otherwise we accepted
OpenTalk’s default behaviour.

Q. Need to redesign for distribution? Not really, In the ODBC task they
found places where the system was ill-designed and rework helped but that
was not OpenTalk specific.

ControlWORKS, James Savidge, Adventa
(Impromptu talk offered by James after a BoF.) James demoed
ControlWORKS 4.3 running on VW7.4. (Because their customers are
large they like carefully staged upgrades, so tend to be running a version or
two behind.) James had worked in the wafer fabrication domain and
wanted to keep working in Smalltalk. He was therefore pleased to get a job
with Adventa some two years ago, after two years coding in Objective
Forth. He was hired to work on their related ProcessWORKS product but
the trend of work that customers needed led him to ControlWORKS. He
will be visiting a customer on Monday to show, amongst other things, the
configuration comparator work he has recently done.

The main image controls other images run on embedded machines running
Windows or VxWorks. Their TMC image can control the robot and the
interfaces to the central chamber. The same image with different
parameters does the process monitors. He started one of each on different
ports. The ControlWorks UI opened. The interface it uses is to a
considerable extent required to be what it is by industry standards.
(Industry wants operators to be able to move from machine to machine
without having to handle different interfaces.)

Users must login; this is mainly for capability: different users can do
different things, especially can or cannot do dangerous things. They also
have interlock, rules in the scheduling engine that are there not to allow
things but to prevent things. You don’t want to replace one chemical in the
chamber with another immediately afterwards if the two make an explosive
combination.

(The usual demo hiccough occurred at this stage. Everything appeared
started but the control image was not doing anything. At first, James
shutdown all the modules and started over but it emerged that parallax on
the demo machine was the problem; it was doing an imperfect job of
emulating the appropriate OS. He had to reboot it and stop displaying to the
big screen; instead we clustered round his machine. Later, he had to use two
mouse devices, one to move the mouse arrow, the other to get right-click
menus.

Because we were clustered round his machine, I could not take my usual
notes at the time. These were typed up from memory afterwards and may
contain errors. See user report on ControlWorks in my Smalltalk Solutions
2005 report.)

James took us through several features of the app. An impressive graphical
widget embedded in the screen to manage a cluster shows its circle of

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 31
chambers with their valves, the robot moving wafers between chambers
and the input and output wafer stacks. The robots, the values to the
chambers, etc., are controlled by the scheduling engine, whose efficiency
has immense financial significance. A stack of wafers input to a cluster
might contain 25 wafers. If the scheduler allows the cluster to process two
extra wafers in an hour, that could mean $500,000 extra earned by the end-
user of this system.

The system must manage the drift of the machine from its initial behaviour
as it gradually gets ‘dirty’ (understand this in a very relative sense) with
use, and must schedule the various maintenance processes that restore it to
pristine state. At a given point in this cycle, the exact times and settings to
do various things will differ. It must also manage the tolerances that the
various analogue processes involved can endure.

One of the key features is user-customisation. Users may create subclasses
and connect the rules to them, etc. These configurations can become
complex. James showed recent work on a comparator that lets both them
and their user see the differences between configurations: all differences or
just the important ones as they step by step see examples of and exclude
types of difference that are not of concern.

All in all, it was a powerful, well-elaborated system. It is well-placed in its
chosen domain and could probably be applied in others, wafer-fabrication
not being the only task using robots, complex processes and schedules.

Tools and Process
VASmalltalk 8.0 and Beyond, John O’Keefe, Instantiations
I’ve incorporated all the material, discussions and questions from John’s
StS and ESUG presentations into his most recent one at Frankfurt.

GemKit, Paul Baumann, Intercontinental Exchange
GemKit was built by GemStone consultants for their customers. Later it
was open-sourced at Camp Smalltalk. Paul has worked on it and version 4
was released immediately after this presentation.

His demo was of updating VW code from an empty GS/S database. He
opened a vanilla VW image with GemStone client loaded (GBS). He
loaded the GemKit code (connect to repository, load the version, very
straightforward). GBCManagement does the main work. SystemUser
represents the users in the GemStone dictionary. Each user can have their
code maintained separately. Some extensions that GemStone needs (and
that Paul will get added to the GemStone base release later) are supplied

Normally a dialog would lead you through installation but his demo
database has GemKit installed. He opened the comparison browser and
showed how the ‘exclude similar’ button lets the user ignore white-space
differences. Whenever there is a difference, the browser shows 2 panes,
one for the database and one for the image, with colour-coding of the
differences. His demo had 6,000 pieces of code to compare (GemKit
seemed fast and responsive, given this number).

32 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
He updated the code (there were few changes since the demo image and the
database were well aligned) and the globals (many changes). Some VW
prompters (e.g. for do you want to capitalise Globals coming from
GemStone with lower-case names) are not yet hidden by Paul.

GemKit uses the original GSS class definition method. Later, he will allow
exploitation of VW’s ability to add attributes to classes.

He then went to an application database with code. He showed producing
a patch that can apply a set of changes repeatedly. He first compared the
code in the package (116 differences) then compared all the code in the
Globals namespace (many more differences). A specific application would
categorise (e.g. as GemKit, PerformanceProfiling, ...) and you update
against specific packages rather than just update everything into the
Globals namespaces unsorted (when you would be unable to distinguish
general extensions from application-specific code and so on).

He then used the compare tool to examine specific changes and do specific
updates. Then he logged in as DataCurator and looked at AllClasses. He
reverted a couple of things that had been changed to be capitalised (because
he had OKed VW prompters which in fact you would not OK) and
otherwise the ‘SystemUser’ and similar code was largely unchanged, with
new code in ‘Managers’ and elsewhere. In VW, he showed that the changes
where he took the GemStone code were also in the appropriate packages.

If you do not commit, you lose your changes in GemStone but they remain
in VW, which might sometimes be what you wish but usually of course you
will commit.

When you get used to using GemKit you may well want to edit the bundle
specification to e.g. move Globals out of it or otherwise associate your
specific changes to your application bundles rather than GemKit. This is an
appropriate part of adapting GemKit to your application’s use of it.

He showed comparison of 26,000 definitions between GemStone and VW
with an unprepped shared page cache. It took a few seconds: maybe as
many as ten. You can reformat to make the code appear to match, format-
wise, in both panes and scroll both panes together.

So far, he had showed developer tools. You can also file-out the entire
symbol dictionary to be filed into GemStone via a topaz script by a
database administrator. He showed generating a patch of differences and
filing-out those (he demoed this for a package but you would more often
do it for the entire bundle).

If you have a package with several integration-ready changes from several
developers, all in different bundles, then they can be hard to find. A tool
(the ReleaseAssistant) finds all such changes that are under a selected
bundle and lets you select and merge to produce an overall set of changes
to apply. He demoed using the release assistant to see changes from another
developer, create an integration build of all the changes, apply comments

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 33
that will only be set on his own changes, etc. The tool warns if you include
a change that the merge tool would exclude under ‘exclude similar’.

Paul then showed how, if you have been lagging, you can apply your
changes to the latest build. The setting ‘make changes on the latest build’
does this. He loaded a previous version, selected a method that was
changed and demoed this.

Many people have two paths - a release path and an ongoing development
path - and if they make fix changes in their release path they want to apply
them to the development. The merge tool lets you apply changes in path to
another path, with ignoring of white-space differences, etc.

Q(Dennis) Exception-handling? GemKit has approaches to handling
exceptions and subclasses.

Q(Dennis) I have 3000 identical non-GUI subclasses? GemKit had a
feature called mirroring which has not yet been ported to this Store-
oriented version but could be got to work.

Q(Niall) Some methods that are naturally different (e.g. DNU has different
implementation in GemStone and VW)? This would be handled by putting
the ‘don’t make the same’ code in a package or packages that you would
know not to publish to/from GemStone.

Q(Dennis) I have 20 databases to be updated every night? Paul thought
Dennis’ existing process solution for this would probably use GemKit
within the overall process rather than be replaced at top level by GemKit.

Q. Method deletion? Comparison tells you and will remove (old GemKit
had an ugly ‘remove everything and reapply’: this has been fixed).

Q. Production users? Usually, only developers use the tool. The artefacts
button is customised for apps; at Intercontinental Exchange they show a
dialog to produce paths and etc. and where they were saved so production
users find the patches where they expect and run them when appropriate.

Monticello, Colin Putney
(I had to leave before Colin’s talk was due but he kindly demoed for me
during lunch on the last day. Read these notes in conjunction with my 2006
Smalltalk Solutions report on Monticello.)

The UI is what is new. The Monticello 1 interface looked at the whole
image at once and all the repositories you knew about: you had to set up
repositories for each package manually. The new UI project ties together
all the bits that go with Pier or Seaside or OmniBrowser or Monticello
itself. All the slices, all the repositories are grouped and you save a
snapshot to all the repositories (that you can see: you can synch with the
rest later). When you load, you load from any repository where what you
want can be found (checked in the order you added them at the moment;
later he may add a strategy e.g. to take from local repository if available).

34 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
The next task is a much better merge tool. The merge command is ‘include’
to make clear that its semantics differ from what you expect in Store or
Envy.

Italics mean an item is loaded, bold that it is not in the currently loaded
item’s history. The tool shows all different elements, in bold if conflicting.

The layout of the tool is diagonal: the bottom left pane shows the code in
your image; the top right pane shows the code in the version being
compared. This is unlike all other merge tools I know, but in all those other
tools I find it is easy to get confused about which of the two lower panes
corresponds to which of the two versions you are viewing. You can resolve
in various ways and see immediate unbolding / whatever. Resolution code
appears in the bottom right pane. You can edit the method there and save
it; if you go elsewhere and come back, your edits are still there but not yet
in the image. This is useful when you need a third option but must apply
things atomically. You then apply all to image and snapshot to write to the
repository. Applied resolutions are marked dirty so you know to save.

Normally, resolving and publishing decides the history; that your choice is
preferred to its rival when merging is known to the repository. (However
you can also apply a resolution without enforcing the ‘my choice is the
right choice’ record. You can apply to image without creating history.)
When merging later to a third version then if a method or class definition
version in it superseded the version you chose the tool knows that and
offers that as the preferred choice - which you can change but usually you
will take it.

So far, this has been simply improvements to version 1’s features. The
project configuration slice is a new feature: Projects themselves are
versionable. Colin distinguishes a project’s repositories and its line-up: the
slice of the project’s contents that are loaded, the versions that are loaded.
Colin demoed loading a changeset slice.

Documentation is to be written. He wants to write both a user guide and the
technical definition. He is porting to GemStone. He also wants to port VW.
Release will be soon.

Automating Smalltalk Builds with Cruise Control, Randy Coulman,
Key Technology
This is half a how-to talk, half a report of Randy’s experience. Key
Technology build big food-sorting machines (see Smalltalk Solutions 2006
talks by Travis and Randy). 60% of their code base is in Smalltalk and it all
runs on Linux. Builds should be automated because people make mistakes,
especially when under pressure to meet a release deadline, which is just
when you will be doing the build.

Continuous integration is an XP value. Every time you make a change,
send it to an integration machine that adds it to the main build. It was
introduced in Envy but proved hard to translate to more conventional tools
in which branching and merging are heavier tasks. Thus a tool for CI is

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 35
needed. Key has multiple languages and their CI tool gives them an .iso
image (of their C, C++ FastScript, Smalltalk, Graphics files, etc.) that they
can burn on a CD and ship at the end of every check-in. They’ve been using
ANT for 6 years. ANT drives CruiseControl.

He opened a VW image, published a couple of packages (Key do not use
bundles) and showed the automated build. It starts with a quiet period when
the system things “he’s just published so maybe he’s still publishing”, after
which it kicks off the verbose script. He opened his mail and saw his build,
including a warning that a remote tester that he cannot see at this site was
not reached for some tests. (They archive these emails for years back,
sometimes useful for reconstructing when things were done.)

CruiseControl was an open-source project written in Java released by
ThoughtWorks back in 2001. It has a pluggable architecture. It has a build
loop, a JSP-based recording application (he opened a web page and showed
his project). He thanked Arden for publishing James’ build scripts which
have been very useful. He went over them carefully (James: “They work
just as well as my code.” Randy: “That’s why I went over them very
carefully.” :-)) and a dashboard (newer; he’s unsure whether he likes it or
not since the information is in a more attractive format but possibly less
usable) that shows when your builds last passed.

Travis built a Smalltalk system which Randy changed to work with cruise
control for working with the rest of their code. CruiseControl 2.7.2 has
Store support: Randy wrote it and the project added it the same day he
emailed it to them.

The build loop checks for changes, builds (“compile”, run tests, create
debian packages, etc.) and publishes the results. Their C, C++ usually has
make files so “compile” is calling them. For them, publishing the results is
an email; you can make lights flash if you want to. They configure via
XML; he showed the XML file of the build instructions.

The raw XML has a lot of duplication and there are ways to reduce this
using preconfigured XML entities or whole projects. He showed the
refactored file that used these. Two pages reduce to 12 lines or so.

CruiseControl lets you do remote control via Java Management Extensions
(JMX). The UI is ugly but it lets you force builds, or pause the build while
you put something it needs in place or do some maintenance without which
it would fail. He forced a build and showed the email.

For Smalltalk builds he tried to follow the standard Cruise Control
expectations. He checks Store for changes (StoreForGlorp made this much
easier than it would have been in standard Store). A version regex exploits
their versioning standards to find what it needs. A file is used to cache the
Store change information so he does not have to refind it at each point in
the process. It is ordered by dependency, so it is a valid load order. The
search is with reference to a particular timestamp.

36 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
He showed their prerequisite graph tool (thanks to Martin and Travis for
cleaning it up) which is in the OR.

A TestLogger package runs the SUnitToo tests (or it could run SUnit of
course). It outputs in the format that JUnit uses because CruiseControl
knows that. Then they run Fitnesse tests (see his tutorial).

His slides show useful links, including his blog for more information on all
the above.

Q. Determining which version to load? We load the latest that matches the
version regex. You can set a minimum blessing level as well.

Q(Peter H-M) Stripping? It can and they do a little of it. They build on a
base image from which stuff they do not need are mostly stripped anyway.

Travis is using some of this stuff and extending it to use bundles.

Q(Peter H-M) SUnitToo? Travis’ variant of SUnit that holds tokens, not
whole test cases, so avoiding delaying GC.

As an experiment, he built a variant that ran all his tests every time he
accepted and he likes it better than he thought he would.

AIDA and Seaside
AIDA/Scribo: a powerful CMS at your fingertips, Janko Mivsek,
Eranova
Sadly, Janko could not be here so Martin Rueger gave the presentation.
AIDA is not Seaside but it is a powerful web framework with many
capabilities. Scribo can be compared with Pier. It is a content management
system built on AIDA. Janko tries to have everything is in Smalltalk, even
things like proxy path handling. It uses AIDA’s strengths: an MVC model,
REST-style interface, built-in security, components and AJAX. The REST-
style bookmarked URLS are important for CMS systems.

Scribo is well suited to blogs, wikis and complex document-style sites.
Developers can use it to do many things. AIDA runs on Squeak and
VisualWorks. Scribo is mainly exercised in Squeak today but should work
in VW no problem. Scribo was inspired by a prior system called BiArt.

Components in Scribo are called scriblets. The core of Scribo is a
Document. Versioning is built-in and many versioning schemes are
supported. The rest URLs make it possible to interact with the versioning
programmatically and/or webwise if needed.

Documents have lifecycles. Scribo provides a range of states e.g. pending,
redo, approved, released, obsolete, so an organisation can realise its
process in the CMS. Folder is a subclass of document, Documents have
chapters, horizontal and external links, etc.

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 37
Scribo has good multilingual support, mapping user language to display
language and locale.

Scribo is in alpha currently. Plugins are generic Wiki with subclasses Blog
(very complete) and Website (less complete at the moment, so much like
its Wiki superclass).

Scriblets, components embeddable into the text, are how you extend
Scribo. There are predefined scriblets like Gallery and Table of Contents,
and developers write custom scriblets for what else you need.

Aida grew out of legally-valid-archiving work done by Janko years ago.

See Scribo on the web at nico.bioskop.fr (blog), Squeak Project Manager,
the BiArt/ISO quality management system, www.swazoo.org,
www.aidaweb.si and www.nets.si (a commercial website that shows
templating scriblets).

Future work: Janko will also do work in VW and his version of GLASS:
GemStone, Linux, Aida, Squeak and Smalltalk. There will be more plugins
and more scriblet sites.

Michael then demoed, launching the server in Squeak then going to his web
browser. He logged in. Yesterday he had to set all his permissions since that
is not automatic yet; that will be one of the beta things. He went to the blog
settings page and then wrote a blog post (using the same rich text editor that
other systems use).

Then he went to the wiki. It uses the same text editor, lets you add links
using a typical smalltalk wiki syntax (WikiWorks IIRC: links are written [a
link title>PageNameOrURL]. He created a page with an image. The
settings page lets you configure the virtual host and other things that other
systems would leave to Apache but Janko lets you do in Smalltalk. You can
still do it in Apache instead if you wish but his replacing of the A in GLASS
has reason. Other settings let you control access rights and see statistics for
your site. Thus you get a server with everything in it, all very easy to find.
Martin feels that is where this stuff shines.

Q.Is this for platform applications or for general web stuff i.e. more static
stuff? Rob Rothwell explained that it has AJAX built in and Nicholas
Petton has been working on Scriptaculous.

Q. Seaside scriblets? Janko is thinking of it. The different component
models of the two systems mean a framework would be needed.

Why Smalltalk? A Healthcare Perspective on Creating Internal
Domain Specific Languages, Rob Rothwell, Fairfield Medical Center
Rob Rothwell is not so much a programmer as a user who users computers
to solve his problems. Janko helped him a lot to get a web framework on
his app and he found he’d agreed to present.

38 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
50% - 60% of a hospital’s income comes from medicare and medicaid.
They lose $3-5 million per year in their emergency room since people go
there instead of visiting their doctor. They would like to save money.

All the advances in medical care means increasing specialisation. The
result is less holistic medicine. This in turn leads to complaints and this
leads to government regulation: prove you gave the heart attack patient an
aspirin within 24 hours. This is called ‘transparency’ but it is a lot of work
for the hospital and it is ‘voluntary’ but income will depend on your having
tick marks instead of red Xs here, there and everywhere. Then the
insurance company decides to use the government’s scheme but with
differences. So he has to generate that information as well.

Having achieved this, he has to send the data through a vendor, not directly
(legal requirement lest he fudged his data) so 3 months elapse iterating this
data through the vendor and then they learn they failed, which is too late.

How did he get into this? Well when he left the army he wanted to find
somewhere he could make a difference and this is where he arrived.

Everyone in the hospital is very IT challenged. This is not a criticism; it is
the situation. Times are written down on forms and they do not match the
times in the system and a project is needed just to match these for some
data.

All the above is an opportunity: large IT companies supply monolithic
systems that are too rigid here and too customisable there and people in the
hospital use 10% of it at most because they have not time to learn the rest
or it does not really match their needs.

Example: he tried to measure the cost of a surgery case. To know the cost
you have to see what was used and know what each item cost. They
collected all the wrappers and tried to match them to the names: an item can
be called an adaptive dressing by one person and a non-occlusive dressing
by another and the database has a third name that matches neither of these
anyway. Is this a 1 inch needle or a 1.5 inch needle? People run out of the
room and get new items quickly; if time allows they scan it, but if the
patient is in a serious state they’re too hurried so you get the barcodes from
the waste bin.

One provider provides barcode scanning. It takes many screens and
mouseclicks to get from the front screen to where the barcode can be
scanned. Then you must find the right keyboard wedge to scan and ensure
you’re on the right place on the screen. This is hopeless both for the
technically-challenged workforce and for the timescale.

People collect all this data and put it into Word, from which they copy it
into Excel, then put it into Word and send it to someone who then puts it
into Excel and so on and on ... That is how this reporting ends up. As for
development staff, there’s him and another staffer, and a guy who must be
given very clear instructions.

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 39
So why does he want a domain specific language? Because he has a set of
very domain-specific problems.

They must report that antibiotics were given 24 hours before surgery and
discontinued 24 hours after surgery. Start time for surgery might be defined
as when the surgeon entered the room in one scheme, as when the first
incision was made in another, etc. The time window might be 24 hours in
one situation, 48 hours in another, etc.

Excel is the most prevalent business domain-specific language. When the
name of a column is changed, mapping between data does not work so well
but it is customisable by the users. Everyone else cares that two patients got
the same care but they want their specific nuanced data on that specific
patient.

Smalltalk is a generic domain specific language. He can use it as is and
customise it bit by bit to his needs. He needs transitional data storage.
Healthcare has 30 years-worth of systems from which he must extract data
(without bringing them down because they’re still using them on live -
“and we’d like them to stay that way” - patients) and unify it. To him, a data
warehouse is just another data source because he’s not going to get
everything he needs into it anytime soon.

A web interface can be made visible near to the person who has the data.
A fat client is also possible. Dabble DB would be interesting if it could be
brought in-site; they are not going to put medical data on an external server.

Rob believes that documentation tools for healthcare could be better but
will always be poor. Rob wants a nurse to see a screen that look like a
patient so she clicks on an elbow and sees what elbow info to record.
Ordinary people need extraordinary tools; that’s why he came here, to meet
the people building such tools. People need to program. “Change your
process to match my software” is what everyone says but it never works.

Smalltalks collection classes alone save him. Someone comes to the ICU
then gets sick and goes elsewhere then comes back to the ICU and so on.
It is hard to query a DB to get the intervening times matching this process.
He can write a simple program on collections in Smalltalk to explore that.

ODBC is a must in Healthcare because someone has always bought
someone else’s custom system and you have to suck out the info.

Thus his phase 1 task was a generic web-based data extraction tool. Phase
2 was preloading all the info; don’t make people add the patient number
and their name. Phase 3 is knowing whether the data will pass or fail
against the government’s schema, against the schema used by Leapfrog (a
healthcare company), etc. He implements this by subclassing general
measures to capture that Leapfrog has 48 hours where the government has
24 and so on.

He then demoed his phase 1 system running on Aida. He has a Data

40 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
Abstraction Page Designer in which he can add checkboxes (“Checkboxes
are real big in healthcare”) and menu designers. The result is all in the
database and refactorable; you can rename headings and suchlike. Next he
needs to bind these dynamic things to his changing requirements, Next year
they will have 70 new core measures on which they will have to report
“voluntarily, so we get paid”.

The one good thing is that the numbers are finite. Congestive heart patients,
300 per month, are probably their largest single category.

“We don’t face a health care problem in the US; we face a health business
problem - socialist beliefs with capitalist payment.”

Q.(Georg) How did you meet Janko? Rob was exploring web issues and
Janko was superb at answering his questions.

Everything in healthcare IT is based on, ‘Is it free’, ‘Is it cheap’, although
somehow they can always hire 3 people to type data whenever the IT is
lacking.

GLASS: Share Everything, Dale Heinrichs, GemStone
After a few minutes, the screen projector was persuaded to take notice of
Dale’s machine and he opened a Firefox and a shell.

Avi’s blogpost on GemStone architecture and Ruby got a comment saying
‘Yeah these shared caches are OK but how do you do share nothing? That’s
a technology that’s been around since 1994’. :-) (Later the comment got
edited or deleted.) Share nothing could be characterised as ‘Hit the
database every time you need anything.’

GemStone/S persists every reachable object. In Seaside, they extended the
framework to do an abort when an HTTP request is received and a commit
before an HTTP response is sent. Thus users get the behaviour they expect
without having to do anything more than they do already. There is no need
to embed transaction logic in their application.

Scalability for Seaside means being able to handle more requests by just
adding more resources. The aim is to go from a single app to Apache
running multiple Apps without making any changes to the application.

Every object in GemStone has an oop (an integer) and objects are on pages.
Thus object 1 on page 1 may have a reference to object 3 which lives on
page 2 (real oops are a bit larger of course :-). The shared page cache means
multiple VMs can use the same pages. An object graph can be partially
loaded (for the very large models possible in GemStone, models must be,
as the entire database will never load into memory at any one time). He
showed object 1 being loaded with its reference to object 3 which if used
would then be loaded (‘faulted in’ in GemStone’s parlance).

Object tables map ids to actual locations on pages. A VM can load an
object table (call it object table 1) and then makes changes and commit

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 41
them, so one VM can point at an object table (call it object table 2) while
another points at object table 3, each valid different entire views of the
database. The changed object 1 can be written to page 3. The old object 1
on page 1 s invalidated when no VM’s object table is still pointing at it.

Commits can conflict of course and the loser in the commit race must
handle that. In Seaside, if the automatic commit before the HTTP response
fails then they resend the HTTP request. This aborts, restoring the state
when the request first arrives, and so the request gets the same behaviour
as before. In effect, it is just rearranging the times of the responses and will
normally result in users getting times that do not overlap. Of course, at very
high volumes, or with users who are having very long transactions, you
may reach a situation where you want to provide application logic for
commits. Every 3 minutes, the maintenance VM checks for sessions that
have exceeded the Seaside timeout. It also does GC.

The Seaside data is shared across all VMs so you do not need to use session
affinity; any available VM can handle the next Seaside request and will
have all the data it needs to do so.

Three months ago, they changed the tools environment to make auto-
commit the default. In development, every accept commits. The standard
log is big when you are running 5 VMs and even bigger when you are
running 100, so Dale added an RcQueue object log with a Seaside interface
focused on the data a Seasider will want to see.

Dale then opened the tools to demo debugging. GLASS likes the Omni-
Browser tools since, unlike GBS, all the objects live in GemStone and the
tools act directly on lists of them, not on replicates of them into the client.

Next there was the standard demo hiccough: Dale found that his demo
counter was incrementing when he decremented due to work he was doing
this morning and forgot to revert, so decided to use fixing that for his demo.
He set a breakpoint, saw a standard Seaside walkback, went to the
GemStone transcript window in the tools, clicked on the debugger, selected
the appropriate context to debug (only one in this demo) and saw the
debugger. The code can be saved in the debugger but hit refresh and you
still see the old code; things like this are why this is still in beta.

He then showed the object log in the web browser. It showed which VM
handled the request, the oop of the object, the continuation (reified and
persisted) and the process, etc. When they debug, they persist the process
so when you hit resume it finds that process and resumes it. Thus you don’t
have to think about whether you have 2 VMs, 8 VMs or whatever, you just
get the process you want.

He did a halt and showed that his drop-down list on the debug button had
two items, the halt and the prior breakpoint (which no longer had the up-
arrow because you can debug it but you no longer can resume it, the
infrastructure for it being no longer around).

42 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
Seaside is stateful and can generate a lot of state while you are running.
Both he and Colin Putney independently decided that 2.9 is going to reduce
the amount of saved session state.

GemStone 3 will allow non-tranlogged objects since tranlogging is done
for recovery and session state is not wanted for recovery. This will happen
automatically when session data is put in a different global dictionary.
Questions raised the point that if users could see this global dictionary they
would find uses for it.

In 3.0, exception handling will be ANSI standard. 3.0 has plans for Native
methods and Foreign Function Interface; these are also interesting to
GLASS. Sharding to address performance, there being a limit to how fast
a commit can be done, will be looked at.

Q. VMWare appliance? That is their preferred way of distributing GLASS.
They are working to extend the installation possibilities but for now that is
what works most easily so they recommend it.

Q. Non-Squeak client for the tools? If you have VW or VA and GBS, then
you can do much the same thing. They have not yet ported the Squeak tools
to VW and VA, but on the other hand perhaps you will prefer to use
WebVelocity or suchlike. Moving the OmniBrowser into GBS is being
considered and certainly can be done technically.

Monty pointed out that a Seaside app developed elsewhere can be deployed
to GemStone easily - one customer did this in literally one minute. GLASS’
aim is to create a pool of Seaside-competent programmers who will then
work on larger apps and drive the growth of this market.

Q(Paul Baumann) when working on this kind of thing a while back Joe
Boscancas found some cases where you wanted a request that did abort but
never committed. Do you have that? If no objects are written, that is the
effect you get. That’s why Dale is working in 2.9 to reduce unnecessarily-
saved session state.

Q. SeaBreeze, WebVelocity, GLASS: how do they tie together? James and
Dale both answered. They are all written on the same base Seaside
framework. Genuine write once, run anywhere.

Building a Seaside Application with GLASS, James Foster, GemStone
James explained some features of the GLASS licence. If you go over 4 Gb,
your server will shutdown. You can contact GemStone and get a one-week
GLASS licence for 8Gb. During that week you will either realise that
overflowing 4Gb was an accident and slim your DB under the limit again
or else realise it was the natural growth of your app, whose revenues should
therefore also have grown to the point where arranging a standard licence
with support is both affordable for you and the right thing to do.

I went to Vassili’s talk, then arrived and paired (by prior arrangement) with
Werner Wild. Werner and the others had installed the GemTools software

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 43
from the DVD James supplied. Those who had VMWare ran a local
database, the others got user info and connected to James server machine.
Everyone brought up Seaside, saw the counter example, added a
breakpoint and saw the debugger, and connected to GemTools. At that
point, some network problems had to be sorted out. Conveniently for me,
I arrived just as they had been fixed, with Werner and Angela having
GemTools back up and logged in, the rest doing this; work resumed.

James switched to a more demo-oriented presentation, with those who had
the VMware able to work locally, the rest observing, and everyone got
started again on the exercises. James started servers for the course
participants; each participant’s account ran with its own set of source code
so each user has their own view of source code. Thus we again saw the
counter app with its halos and the usual behaviour.

Note that Squeak is not always 100% reliable. GemTools will occasionally
get UI errors and lockups. When it happens (it has happened to James every
hour or so at times) just close Squeak and restart. It may be a GemTools
issue or it may be Squeak or a combination. Gemstone commits every time
you save a method so you will not lose anything except your latest edit.

The next exercise was the mini-calendar in the test suite. A walkback had
been inserted into it and we had to fix it. The walkback appeared in the
debugger. Werner selected ‘remote debug’ and at first could not see it in the
drop-down on the Gemstone transcript widget but in fact he had just been
too fast (large course class all running on small local server meant you
sometimes needed to allow enough seconds). He fixed in the debugger but
then could not proceed because the problem was a bad receiver (code was
trying to treat the integer 6 as if it were the month of June) so we had to
drop that session go back to the tests and run.

After looking for WaMiniCalendar in Squeak and not finding it James
explained to us that we should look in GemStone; select the GemStone
Transcript and go from there. Squeak is not a host for Seaside, or a
programming environment, as far as GLASS is concerned. It is simply a
source of GemStone windows. (BTW, see James’ Dolphin equivalent).
Thus we fixed and resumed.

Then the server / connection crashed again and James restarted. It crashed
repeatedly. Eventually it dawned on us that our attempted fix of the method
year
^ self year

was likely to cause stack overflow and crash the server, after which we
fixed the problem instead of making it worse (the WaMiniCalendar was
initializing month to an integer instead of a Month). In the Squeak base
time classes Date today month returns a Month object. In the
GemStone base classes, the same code returns a SmallInteger, thus making
it obvious where the bug comes from; the raw port from Squeak to
GemStone of the mini-calendar hit this base class discrepancy.

44 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
We opened the chasing browser (hit escape when a class is selected gives
you that menu). Next we went Seaside web page -> tools -> object log and
browsed all our crashes and other activity.

Now we were ready to create our first Seaside component: a web counter
to monitor the huge hit rate our amazing app will soon be receiving. A few
methods added and our counter could render all the content it could detect.
While doing this, Squeak locked up for us and we restarted it. As James had
promised, all our work was saved in GemStone so we simply had to open
a browser on our new class and continue work. After a couple of hiccoughs,
we managed to execute and commit the registerApplication: call
for it and see the number zero.

Seaside Tutorial, James Robertson, Cincom
James showed the counter, the simplest Seaside app that could possibly
work. This very simple class shows several Seaside values in a nutshell; no
marshalling and unmarshalling of state; instead callbacks give a fat-client
GUI feel. He set a breakpoint and walked through the debugger.
Refactoring is far easier than if the logic were scattered across true code,
code in templates in files, and etc. The workflow is a lot easier to follow.

WAComponent’s subclass WACounter overrides renderContentOn: to
paint the canvas. Set canBeRoot and registerAsApplication: on
the class side to define your top-level component.

First exercise: create a component that does ‘Hello world’. Werner and I
noticed the guessing of protocols in vw7.6; it notices when the method is
in a protocol on a superclass or elsewhere.

We then loaded a domain model for a blog, plus some posts, and then built
a blog server to show it on the web.

After building the blog website we then added another entry point. If the
user cancels when invited to login or is not allowed to post, we want to
show them the blog view. Otherwise, we will offer them the chance to post
to the blog.We needed a form
html form:
[...
html textInput on: #username of: self user.
...].

and a call. Call is like invoking a new UI.

(We managed unintentionally to set our BlogViewUI as the top level
component instead of the standard Seaside, probably by setting it in the
configuration.)

Lastly we discussed styles.

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 45
BoFs and Contest
Smalltalk Coding Contest
The first round of the Smalltalk coding contest is described in detail at
http://www.cincomsmalltalk.com/userblogs/niall/blogView. The winner
was Rajesh Jayaprakash (who was using the contest to learn Seaside and
had not used it much beforehand!).

As Rajesh was unable to get to Reno this year, we invited him to come next
year and organised a second round in which contestants had four hours to
help Christopher Columbus rework what were columns and what were
values in the spreadsheet he had prepared for the Queen of Spain. Martin
McClure won, Peter Hugosson-Miller came second. Martin could be seen
afterwards beaming as he mastered his new iPod touch. I understand his
wife was also delighted; she will now finally be able to get her hands on
the one she won in a promotion some months ago. :-)

STIC meeting, Georg Heeg
STIC’s main task for the last few years has been to organise this
conference. Georg was elected executive director a year ago. It is a most
honourable job, i.e. it is not paid. (Suzanne: “You’ve been not paid for a
year. We’ve been not paid for much longer than that.”)

STIC has worked with Gartner to get an appropriate positioning of
Smalltalk and that report is now extant. Georg has found this one of the
nicest Smalltalk Solutions for several years and thanked Suzanne, Joy and
all the people who made it so. James is their webmaster and STIC’s website
is now much improved.

Monty thanked Suzanne and Alan and Joy for all their hard work, and Niall
for the contest. John O’Keefe echoed that; several people have commented
to him that the hotel is a great facility.

Suzanne discussed the initiative of 2006 and 2007 of sharing Smalltalk
Solutions with Linux world and Network world. It did give us visibility.
Suzanne started hearing from old customers. Unfortunately, they changed
their direction dramatically from Linux world to IT360 and while we tried
that for a year it was not such a good match so Suzanne and Joy decided to
take the conference back. This location with its one-stop shopping, free
shuttle and OK price was great. Nevertheless, she feels the buddying to
other conference has paid off. Niall agreed and stressed that we should be
prepared to combine with other conferences again on occasion.

James mentioned that some East Coasters will be glad of moving around
(i.e. nearer them). Alan and Suzanne said Seaside should of course be near
a beach. Suzanne noted that Reno was not easy to get to for some but when
you got there you did not need to leave the property and that is a good point
for Smalltalkers.

Discussion of what conference we might buddy up to; a Ruby conference,
an Agile conferences (but they tend to be large). Eric has suggested if we
cannot buddy to the Ruby conference could we be in the same property or

46 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
down the street (and it would also give Eric less travelling to do :-).

One customer has hired 15 Smalltalkers in the last two years. The customer
had decided to rewrite in Java but now backed off after a few years of
unhappy experience. ObjectStudio is also seeing a lot of growth.

Q. Numbers? Suzanne noted that publishing Cincom financial data has
been a sensitive issue in the past. Someone mentioned that having the
ability to navigate to those numbers, even if they were not too obvious to
random browsers. If management do quick research on Smalltalk they see
that IBM sold VA to Instantiations and Dolphin went under. Numbers
would help. Suzanne noted this message and said she would see what could
be done to put info on their site and the STIC site.

James pointed out that GemStone, Cincom and Instantiations are all
investing in Seaside, something that is not focused on the existing customer
base; this is proof of something. Monty noted that GemStone has seen their
Seaside efforts have paid off promotionally and privately. They would not
publish data on specific customers but could work with STIC to provide an
industry measure.

Q. Publicise Cincom use of Smalltalk? Suzanne noted the request.

Like Cincom and GemStone, Instantiations is a privately-held company.
However they can confirm they have had substantial revenue growth.
Instantiations did work with Gartner to provide info recently. Cincom also
worked with Gartner and that will be a route to get info into the domain.
Arden noted that Gartner has moved Smalltalk from elderly to mature.

Q(Thierry) He was very pleased that vendors are open to SNBs which
previously he had felt not. John OK noted that IBM of course was not
interested in SNBs whereas Instantiations attitude is much more positive.

Seaside BoF
Carl Gundel demonstrated Run Basic. He showed a hangman program
written by someone with no prior experience of the web whatever.

They have sold several hundred copies since the start of this year. Their
forum has 200 members. Users are very happy with it. Their other product
makes them regular money but it is not unique; it competes with other
products. By contrast, this app is unique. They could not have done it
without Seaside. It was seeing what other people had done with Seaside
that inspired them to try it.

He has not yet tried any of the AJAX stuff. He wants to use it but feels he
does not fully understand the examples. There is no STUG in Boston and
Seaside users in Vancouver are a bit far to visit.

When he started this, a frequent question was ‘Why are you creating a web
basic?” His best customer asked that before she saw it. After she saw it, she
saw the answer.

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 47
Peter remarked that he met Seaside for the first time yesterday and liked it.

Colin Putney has OmniBrowser running on the web in Seaside. His start
page is one button but will become something like the VW launcher. It
shows a Mac-like icon list and one of these opens the OmniBrowser, or
would except for a DNU. As we were overtime and the GemStone BoF was
ready to go, he decided to complete the demo later.

GemStone BoF, Norm Green, Martin McClure, Monty Williams
Norm presented the GemStone 64 server product roadmap. Martin talked
about GBS and Monty outlined the Ruby Maglib work they have done.

The 32 bit product is being wound down as almost all their customers have
expressed intent to move to 64. They have just released 6.3.0 and 6.3.1 is
due by the end of this month; it’s in QA now. He hopes this will be the last
32 bit release for a while (but probably not the last). The current 64 V1
release is 1.2.5. Major customers have moved to it and others will shortly.
The next V2 release is scheduled for October 3rd.

They’ve added Solaris 10 and HP Integrity (Itanium 2) to their supported
server platforms. There is also an Apple Mac (Leopard, Intel) non-
production version available to customers who ask for it.

Gemstone 64 2.3.0 will have PersistentSharedCounters (like shared
counters) for apps that need to generate new ids and similar. The protocol
is the same as SharedCounter with larger range (signed 64 bit) and atomic
persistence. StatMonitor can be run without running a GemStone and
monitor any process and all processes owned by a given user id. All the
host system statistics can now be accessed from Smalltalk. GsFile can now
read and write compressed files (uses gzip library).

A user-profile can now be made read-only programmatically by sending
disableCommits to it (so e.g. could respond to improper operation by
preventing user committing it).

It will support direct I/O, bypassing the Unix buffer cache, a performance
win for certain cases.

GemStone 64 V3 is still in the planning stage. It will have native code
support, which can give 2x speed-up, and multi-threading support for
tranlog replay, so restarting will be faster. DLL access will also be added.

Various other things might be added. Multi-thread global GC (single-
thread takes weeks for 3 billion objects and the offline is better but can still
take days). They know how to do this. Several other operations would
benefit from multi-threading. They would like SSL socket support, SNMP,
LDAP authentication, Web service classes and automatic load balancing
across several shared page caches. They have customers who run large
pools of Gems across several caches and there is no easy way to decide
which cache a Gem should be started on; the system knows which is least
loaded so could allocate sensibly.

48 Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
Q. Proposed date for 3.0? Norm’s proposed guess is the end of this year and
he is sure it will be released earlier in 2009 than this date.

Martin McClure then spoke about GBS. Martin’s slides were yellow with
blue background on his screen but orange with black background on the
projector. Fortunately, they were still readable. Since the last Smalltalk
Solutions BoF they have released 7.1.2 (bugfix and support for VW7.5)
and 7.2, which had performance improvements, configuration changes and
single round trip. It is only supported on GS 64 servers at version 2.2 and
later. It reduces several multi-trip operations to single-trip operations in
forwarder sends (it also avoids updating unchanged things) and in remote
evaluation (evaluate: calls). It also used to be the case that you chose
lazy versus immediate faulting; since the new single round trip eliminates
the other trips where lazy faulting would piggy back, they’ve eliminated
this feature since immediate faulting will always be faster.

This year, in GBS 7.2.1, they are working on performance. On Monday,
they issued a release candidate that is twice as fast as their old benchmarks,
and this is older 32 case compared with newer 64 case, so handling 30%
more data in the benchmark. This is the fastest GBS they’ve ever released.
He’s hoping that some performance techniques users have tried in the past
can be discarded now that GBS can replicate > 100,000 objects per second.
They got this performance by replacing C memory access (5 times slower
than accessing a byte array in VW) with pointers in object space to avoid
that primitive. The other technique was to streamline the code.

In 7.2.1 they only support single trip so it only works against Gemstone 64
2.2 and later. They will then release one where multiple round trip is
reenabled so you can get the other speed-ups in 7.2.1 against older servers.
Eric will work on completing the latest VASmalltalk GBS when he returns
from this conference and that will appear soon (yes, they know it is late).

Other future features. Concurrent traversal of buffers (get first buffer, ask
for second buffer while processing first) uses 105% or 110% of current
time so with multiple CPUs it will reduce the elapsed time.

Forwarding replicates that mix and match which methods they forward and
which they handle locally is coded but needs tests before it can be released.
Uses include DNU forwarding (if the client doesn’t understand this, try the
server) and one-time forwarding.

Q. Relation to uncached forwarder? Uncached forwarders are an
abomination. That some people use them is what drove him to work on
ForwardingReplicates. It is a far cleaner implementation of the same intent.
He will give people time to migrate from them before eliminating them.
(And if anyone thinks they use them in a way that ForwardingReplicates
does not support, please tell him.)

Q(Angela) When released? Before the weather turns cold again.

Q(Angela) Supporting VASmalltalk 8.0? A GBS release has about 100

Smalltalk Solutions 2008, Reno, 18 - 21 June 2008 49
supported configurations so they are keen to limit it to what users use. If
8.0 is out a few weeks before their release they will support it as well as
earlier VASmalltalk versions. VW7.6 will be supported by GBS 7.2.1

Monty then talked about Maglib. Avi suggested that Ruby is close to
Smalltalk and that Gemstone would make a good Ruby VM, existing ones
being not so robust. Monty went to their conference and counted that there
were a lot more of them than us but they are a lot less sophisticated: noone
here need consider giving up Smalltalk for Ruby.

Monty showed the 3.0 VM running Ruby and another window running a
standard Ruby VM. He had to load stuff just to let the standard VM
compute a 3000 size fibonnacci without crashing. He started a big
fibonnacci in this and then opened topaz on the other and started Maglib.
In less than a minute they had passed the slowly scrolling standard VMs
benchmark and reached completion.

People in the Ruby world thought what they and Avi were showing was
magic whereas it was very ordinary to Smalltalkers. There were a large
number of people who didn’t get it - thought it was ‘hung up on
performance’ - but some of the cleverer ones were very impressed.
However there was also the fact that Ruby apps are very Rails oriented with
the ActiveRecord well embedded, so dropping SQL for another persistence
approach will be a stretch for them.

3.0 uses the same VM for Gemstone/S and Maglib.

Kent gave a keynote to 2000 people talking about 20 years of Smalltalk and
unlike a Java conference the general message is very pro-Smalltalk. “Work
with the Smalltalk people because they know what they’re doing and you
don’t.” It was nice to be at a conference where they thought Smalltalkers
walked on water (correction from Randal Schwarts: “Smalltalkers don’t
walk on water; they send a message to water to walk on itself.) However
Monty noted that one thing Rubyists seem to care about is to be able at any
time to hit a button and reload all their code from text files, so the image is
something they find weird.

Q. If Smalltalkers walk on water, do Rubyists plan to become
Smalltalkers? These people came from Java or Perl. What Ruby gives them
is a great improvement on what they have. If they tried to become
Smalltalkers right away, their heads would explode. Chad Fowler gave a
talk in Toronto where he said the innovation of Ruby was that it was not
innovative; people can go to it easily. At the conference, someone asked if
Ruby and Smalltalk can run in the same VM and the answer yes was taken
very positively. If they can get over the ‘have all code in files’ issue they
will be home free, but that is a big hill for them to climb.

Q(James) Is it that people who sign the paychecks are the hold up? Those
people know that traditional ways of building web apps don’t scale.
However Rails apps have their persistence in Oracle so the manager can
sleep at night. The decision to use GemStone persistence as well as the

50 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
GemStone VM will be their hill, to climb.

Other Discussions
Adriaan and I dined with John on Thursday and Ed on Saturday. The IT
market in the US grew by 8% in the past year; Instantiations saw more than
twice that growth in Smalltalk.

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
For the first time since Southampton in 2000, I was in the same country as
ESUG before it started.

Summary of Projects and Talks
I give the Camp Smalltalk 13 projects summary, then the ESUG activities
reports (including the awards presentations and ceremony). Next I
summarise the conference talks, sorted into various categories:
• Applications, Frameworks and Experience Reports
• Development Tools and Techniques
• VMs and Smalltalk Environments
• Aida and Seaside
• Modelling Tools and Techniques
followed by the 10-minute talk track and Other Discussions. Talk slides are
reachable from http://ww.esug.org.

Camp Smalltalk 13
Camp Smalltalk 13 ran for Saturday and Sunday before the conference, and
during the conference breaks, afternoons and some evenings of the five
conference days. More than 40 people attended it. There was much activity
in the room, only some of which I learnt enough about to summarise (with
possible errors) below. Inevitably, my notes treat my project in much more
detail than others.

The Custom Refactorings and Rewrite Editor Usability Project
Michael Prasse worked on a tree widget for the class pane in the VW RB.
TreeModel(SequencableCollection)>>includes: only reports true if the
collection contains the item; if the collection contains an object whose
children contain it, it returns false. HierarchyNavigatorPart>>fillInState:
gets the hierarchy class of a new class, sets the widget to display it and its
parent path, and then select:in: calls includes: on the list while mapping
object root names to objects - and fails to find the class its state demands.
He worked on a fix for this subtle interaction.

Adriaan van Os and I ported the Extract with Holes refactoring to VA, then
looked at making its dialog a code tool as an alternative mode of providing
refactoring UI. Reinout gave us user’s feedback.

PostgreSQL EXDI
Bruce Badger and Michael Prasse worked on an issue with nested queries

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 51
in the PostgreSQL EXDI.

Seaside Applications
Dale Heinrichs, Lukas Renggli, Adrian Lienhard and several others
worked on Pier and Magritte. Work was also done on the Seaside 2.8.3
release. (2.9 by end year is hoped for, not certain.)

COLA 86_64 code generator
The title says it all: Martin McClure worked on an 86_64 generator for Ian
Piumarta’s COLA. In the early stages, when the generated code was
seriously rough, he had a hard time persuading the debugger to open on it
until he realised it needed to be given two addresses; with only one, it was
unsure where the function might end (or whether?).

Amelia
Primary school teaching tools using Squeak and Croquet were worked on
by Filipe from Portugal and others.

Moose
Tudor Girba and quite a few others worked on a range of features. One was
making the IC framework (Seaside bar charts and similar) less dependent
on VW-specific features so it could be ported to other Seaside-using
dialects.

SqueakNOS (no operating system)
Leandro and Valeria were among those working on this. Sadly, Gerardo
Richarte’s talk on it conflicted with Alfred Wullschleger’s and I missed it.

Other Projects
Breakpoint logging in VW.

ESUG Activities Reports
Introduction to CWI, Paul Klint
CWI was founded 1946 as Mathematics department, broadened to other
disciplines including software engineering. He summarised language
development LISP, Algol 68 (remember that; I programmed in it once -
once was enough :-)), and in 1972 Smalltalk appeared. Static typing was
fashionable for a long time. Python appeared in 1991(Guido van Rossum
started it as a project there and still visits CWI regularly). CWI researches
these and many other languages. Currently, they do much work on meta-
programming: analysing old programs (e.g. in Cobol - he hastened to
assure us noone at CWI actually writes any Cobol :-), transforming them,
etc.

They do much research on parsing. There are still problems in the parsing
field: compose two LALR context free grammars - it is not guaranteed that
the result is LALR so you need generalised context-free grammar parsing.
He showed screenshots of some of their tools.

52 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
Conference Welcome and ESUG Activities Overview, Stephane
Ducasse, Noury Bouraqadi
Stephane thanked the sponsors (see their logos on http://www.esug.org/
conferences/16thinternationalsmalltalkjointconference2008); he is really
happy to receive a request for sponsorship from someone he has not asked.
He also thanked the local organisers: Adriaan van Os, Rob Vens, Mathieu
van Echtelt and all those who helped. This is the largest ESUG conference
ever: 172 participants (max 150 on any day) 17 student volunteers, 43 talks
(occasionally 2 parallel tracks), 22 award competitors and 4 books to buy.

Stephane asked how many were attending their very first ESUG? Quite a
few hands were raised. He urged us to use the student volunteers as the first
point of contact for any questions about either the conference or the local
area, and also urged us to help the students get in touch with the Smalltalk
community by showing them our projects.

ESUG sponsors Smalltalk in various ways:
• ESUG can sponsor presentations of Smalltalk, i.e. pay travel expenses,

etc. For example, Stephane gave a lecture at Turino, the temple of type
theory, and they were positive about Smalltalk (noone left and he was
told that students walk out if the lecture bores them). They also had an
RMLL’08 booth. ESUG offers material for giving Smalltalk lectures.

• Via the Summer of Code, ESUG sponsors students to do projects. This
year there are two projects (one started, one about to start)

• ESUG sponsors free Seaside hosting (handled by netstyle.ch).
• If you get a Smalltalk article printed in a magazine, ESUG will give

you 100 euro.
• ESUG helps students who move to Smalltalk groups. They also help

people who go to conferences (will pay 150 euro and get ESUG on
slides): one this year was rated ‘best talk in conference’.

If you want to do any of this ask: they will evaluate and let you know if they
will sponsor. They also sponsor projects: DrGeo (maths teaching for kids)
has scripting in Smalltalk (its scripting was in scheme) and was sponsored
by ESUG.

Attending ESUG is how you sponsor all this. Next year, they are thinking
of holding ESUG in Brest or Barcelona. Any interested would-be local
organisers please contact them. Noury thanked us for attending the
conference, especially MediaGenix who sent 13 people.

Lastly, a new board member is wanted: ask Stephane what work you would
be signing up for.

Presenting at ESUG, Tudor Girba, www.tudorgirba.com
Tudor used to be extremely nervous about speaking in public but had to, so
prepared this talk. He started with a hilarious, very well acted, ‘how not to’
demo: Use large fonts, have six bullet points per slide, left align your text
and put your logo on the right, delimit zones on slides so people know
where things are, have a nice footer with your name (in case people forget

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 53
who you are) and the slide number (so people follow progress) but don’t
have the total number of slides

The talk is not your slides. If all you will do is read your slides, why did
you not just stay at home and put them on the web. You come to ESUG to
tell a story beyond what is on your slides. Know your audience, then
choose the message: not ‘a message’ but ‘the’ message, not two, not one
and a half, just one. After 3 years of research, Tudor wrote a 200 page PhD
to defend one sentence. Think about what you remember from last year’s
ESUG. Your audience will remember one message at best so aim for that,
not more.

What were slides called in the past (transparencies, foils, ...?) Slides were
once called ‘visual aids’. ‘Slides’ is the name of a solution, not of the
problem. He compared a traffic stop sign with a slide of description of what
the sign means. The description is detailed but the slide is effective. Not all
details are important: he described a fish store whose sign ‘we sell fresh
fish here’ was gradually slimmed down to a logo of a fish. Then Tudor
finally added ‘fresh’ back into the logo; you can strip too far, but you are
far more likely not to strip far enough.

Open your slide: see Click here to add Title, click here to add bullet points.
So you add a title and one bullet point. Then you add more because just one
bullet point looks ugly on a slide. Consider having a blank slide and just
put your one point on it. Then have several slides each with one point. By
using a 64-point font, Tudor ensures he cannot put too much on his slides.

There was a time when people just talked, without visual aids. Slides are
technology; don’t let them get in the way. It is normal to be nervous but do
not let that make you turn to the technology instead of to your story. Relax,
walk out from behind the lectern (have your remote control).

Tudor recommended the www.presentationen.com blog. And what was his
message: presenting is storytelling.

(Later in the conference, it was noted that one thing presenters should
always try and know how to do is how to make their font larger or smaller.)

Smalltalk Awards Ceremony, Noury Bouraqadi
(Happily, a rumour that the wine for the awards ceremony had not arrived
proved groundless.) There were 6 entries at Kothen in 2004, 9 at Brussels
in 2005, 11 in Prague, 15 in Lugano and 20 this year. Noury thanked all the
entrants for an impressive array of applications. All Smalltalk code (and
related code, e.g. a Smalltalk VM) is eligible, whether used commercially
or for research, and whether written by academics, by students or by
commercial programmers, provided it is separable from its background
system. Prepare your software for next year!

The entrants made two minute presentations. The winners were:
• 1st prize (500 euros): Dr Geo

54 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
• 2nd prize (300 euros): SeaBreeze
• 3rd prize (200 euros): iSqueak

Books
Squeak by Example was on-sale for 10 euros, Andrés’ books on Hashing
Functions and on Smalltalk Mentoring for 15 euros, and the Seaside book
for 18.

Farewell and Next Year, Stephane Ducasse
On Friday, Stephane led a discussion on how the conference had been.

Reinout thought the best talk (which was also the shortest one) was Rob
Vens’ talk on exploratory modelling; please put it on YouTube.

Having a full program is good but the days were very busy so it would be
helpful to have session chair to say: keep to time, to announce e.g. whether,
if time runs short, we have a short lunch.

When there were two tracks it occupied both rooms; can we always have a
break-out area as well? (Noted; only late on was it realised we would have
to have two tracks in some sessions.)

The first prize went to Dr Geo. Its creator was a C++ programmer a few
years ago till Stephane paired with him in a session. We can all do this.

This autumn, Rob Vens is organising two seminars for students leaving
university to get them interested in Smalltalk.(gosmalltalk.nl is the Dutch
users group). Next ESUG, we would like to have a talk on how to train
Smalltalkers.

Where next? One proposal is Brest: low cost, good flights from Paris,
Asterix lives there :-). Many rooms in student accommodation with
internet connection are just across the street from the venue. And there are
also good hotels and restaurants. The very first ESUG was in Brest.
Barcelona is the other possible site.

ESUG has principles, not rules. Ask them, give them proposals and they
will decide. The need more active people in the board. How will they
develop a new president. Maybe in 3 years Stephane will force us to find a
new president. (Eliot: when you have gray hair, you can resign. :-)

Applications, Frameworks and Experience Reports
WideStrings and utf-8, Philippe Marschall
Philippe sent ubercool (i.e. ü, u with umlaut) and saw it displayed in
browser looking anything but cool (tilde-Afibercool). So what is
happening here?

ISO-8859-15 (Latin-9) is the same as ISO-8859-1 (Latin-0) except it has
the euro. However it does not work in eastern Europe let alone Asia. So
people decided to solve the problem once for all: this complete solution is
unicode.

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 55
Unicode currently defines 100,000 characters (Philippe says ‘currently’
because solving a problem once for all time is an ongoing job). It has a huge
number of what we would call characters and it also has a lot of ‘wingdings
style characters, white rabbit symbols and suchlike. Unicode is effectively
a 22-bit character set. ASCII is contained in latin 1 which is contained in
Unicode: all characters are included with the same index. Unicode is
defined in terms of code points: a code point is an atom of text. [Niall: and
this leads on to glyphs but he did not go into that level of detail.]

Philippe use an analogy between Integer and String representations. An
Integers is a SmallInteger or a LargeInteger and we talk about the range
which these two classes cover, not endianness. Similarly a String is either
a ByteString (ISO-8859-1) or a WideString (Unicode ISO-8859-1) and we
talk about the character set, not the encoding.

Unicode is a 22-bit character set but a SmallInteger in Squeak is 30 bits so
you have 8 bits left over to have fun with. The #leadingChar uses these for
some extra info, e.g. the language and some presentation data. This info is
taken into account or masked out as required/desired when reading the
character.

So how do you know whether a unicode character is a letter, a number, a
white rabbit or other shape, or what? You have to know unicode’s rules.
Fußball is a German word (German German; Swiss German does not have
it). The ß character is called sharp-S (it’s a curly-B-like character for
anyone reading this without the appropriate character sets). It only exists in
lowercase, having no uppercase implementation. (Georg promptly
corrected him: 4 weeks ago it was given an uppercase representation and
that made a big noise in Germany! Philippe was fascinated. However, as
what he was about to say illustrates a general point, it remained of interest
to continue with the explanation.) If you do Fußball asUppercase it
returns FUSSBALL: your string got wider.

Character ordering is also locale-dependent; A umlaut goes before A in
German but after it in Swedish. “Some characters are more equal than
others”; unicode defines degrees of equality: does e acute equal e? You can
also compose characters: the umlaut character plus the a character equals
the a-umlaut character.

Encodings are isomorphic mappings from characters to bytes. For ASCII
and Latin-1, one byte is one character. For wider character sets, the
mapping may not be to just one byte for one character.

There are (at least) 2 ways to encode a 32-bit integer: big endian or little
endian. In UTF-32, both ways are allowed. You also have a lot of zero bytes
(16r00) and code written in C doesn’t like zero bytes. UTF-16 has
additional problems (little endian / big-endian). UTF-8 tries to avoid these
problems by using less space for the western world (the rest of you, tough
luck!). It is 100% ASCII compatible on the binary layer. Everything
beyond ASCII is multiple bytes: send umlaut-u 16rC3 16rBC in UTF8 and
the browser thinks it is in latin1. WAKom does 1:1 direct mapping from

56 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
bytes to characters which works for latin-1 and nothing beyond.
WAKomEncoded uses utf-8. It reproduces WideStrings which in Squeak
are known for bad performance and bugs. Philippe nevertheless
recommends it: if you find bugs please report them or they will never get
fixed.

You must tell the browser what encoding you use. Set it in the http header
and in html header tag, the latter being a nasty layer violation but
nevertheless recommended. (And you have to come up with your code
pages.)

In Seaside 2.8, subclass WASession>>charset which defaults to utf-8. It
will do both of the above.

In 2.9, they realised that the character set is more application related than
session related so they put it into the configuration.

If you want to test, don’t use latin 1 text. Use hindi or something like that
and test the whole round trip. Philippe strongly recommend Tim Bray’s two
articles on unicode.

WebTerminal: less code more RIA, Wouter Gazendam and Dirk
Heijink, CosmoCows
WebTerminal is a product developed by the authors at CosmoCows (see
Mathieu’s talk). Mainframes were where big insurance companies were
located, serving clients: the clients were completely powerless without the
server. The next stage was the PC era. People had freedom to choose
applications but the management of all this was a pain: you had 1000 PCs
to upgrade, not one mainframe with a thousand terminals. Then we got
GUIs, leading to rich desktop applications. The end users faced increased
complexity. So did the creators of UIs and the writers of user manuals.
Thus many developers adapted MVC to have a UI person in the team.

Finally, we are getting rich internet applications. Now the application has
returned to the server.

WebTerminal is a client-server architecture, communicating by HTTP (S).
They support IE6+, Firefox 2+, Safari most recent and Opera most recent.
Customers on corporate networks have no control over what plugins are
installed on their browsers. Therefore they cannot use solutions that need
additional plugins; no Flash, no Smalltalk plugins and so on. The only
thing they can use on the client side is Javascript. Most of these networks
run behind firewalls, some of which disable long connections that are not
exchanging information. Comet uses a long-lived connection in which a
single client request then leads to several server pushes of data to the client
over the same connection, but they cannot do that because the bad firewalls
will kill the connection.

Static content is served otherwise (by Apache, say); only dynamic content
is handled by the app.

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 57
The client-side terminal must render a rich user interface: input fields,
images, buttons. The terminal must record how the user has interacted
(clicked here, typed there) and at the appropriate moment they must reply
to the server in an XMLHttpRequest. The server’s response described how
the UI must be updated and the terminal does that.

The client-side terminal has no application logic. The server does that. It
maintains an MVC pattern for communicating with the client. They have a
protocol, the delat protocol, for sending UI changes from server to client.
It synchronises the right UI on the client side with the virtual UI that is
computed but not actually displayed on the server side.

They only communicate significant changes. They ignore mouse and
keyboard events. They synchronise high-level components (widgets), not
bitmaps like the X Windows Systems. They have all the usual widgets:
label, image, button, tree, groupbox, hyperlink, HTMLContainer and many
more. He demoed and (had the usual demo hiccough - needed to refresh his
session and) showed a tree widget. He then showed the messages
exchanged between client and server when he changed a tree widget
property. These are enough for administrative applications (they are not
aiming at the games market).

They use Javascript, the Prototype library, and have implemented a few
widgets via jQuery and Xinha.

Performance was a issue because they used a lot of DOM calls and on IE
these can be very slow (one page took 30 secs to render on IE6 and < 2
seconds on Safari). They rewrote the rendering mechanism to avoid DOM.
Instead they build an HTML representation and put that source in the DOM
screen only at the last moment.

Support for CSS is poor in IE6 so they had to restrain their use of CSS. In
some browsers, backspace is a keypress event but in others it is only a key-
down event. This is hard to debug and some browsers are also very poor at
debugging.

The architecture is pure MVC with slight terminology changes:
Applications (c.f. Application Model) and PageSpecs are connected to
WebWidget Builders, thence to WebWidgets.

Finally, he built a chat application in WebTerminal. He put the chat widgets
into a simple grid layout, added the past posts widget and put them all in
an overall panel widget. He showed the pageSpec:
PanelSpec new
beVertical;
addSpec:
((GridLayoutSpec new
columnWidths:..;
rowHeights: ...;

specAt: 1 @ 1 put: (LabelSpec label: ‘Name’)
specAt: 1 @ 2 put: ... aspect: #name ...

...

58 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
addSpec:
(RepeaterSpec new
collectionAspect: #messages;
spec: (LabelSpec new

labelAspect: #yourself;
yourself)

....

He saved the pageSpec method, then generated its aspects, name and
nameHolder, text and textHolder. The messages must be the same for two
users of the application so he did the simplest thing that could possibly
work by making the instance-side delegate to the class-side to get messages
from class instance variable.

Lastly, he told the system that Chat was a top-level application (an entry
point), showed it, added an entry and (got the usual demo hiccough - he had
not yet implemented the submit button) and had to tell the other client to
refresh and so demoed.

Using User Changes, Leandro Caniglia, Valeria Murcia, Caesar
Systems
This talk was also presented at Smalltalk Solutions; go there for my single
write-up merging information and questions from both presentations.

GStreamer: media streaming in Squeak, John Macintosh
(Having media problems during a talk about media is tedious. John was
going to show Sophie but the 600 x 800 projection screen does not really
allow it.) John has been working on Sophie and on the iPhone Squeak VM
(with financial help from ESUG; thanks) with Michael Rueger. They will
release the code for it next week so you can see it in the iPhone simulator
or, after paying Apple, in the iPhone itself.

GStreamer is a library for building graphs of media-handling components.
It can be used and abused in a wide range of ways. Its code has good and
bad features; e.g. mpeg codexes are not in the base and must be found by
hunting on the internet. OGG is the only open-source framework for this
John knows of. You can get GSTreamer on WIndows, Linux, etc., and has
a reasonable licence (see the wiki).

The Squeak plugin is not a full implementation. The GStreamer class
library is immense and their subset lets them decode and encode audio and
video via some 100 primitive calls. It has been written for 32 bit; any 64 bit
people here who would like to volunteer? (some ‘yes’es). It should be quite
doable

Most code is in Slang; a very small amount is in C. There is an SUnit for
each publicly-exposed API call. The architecture is subclassed from
GStreamerObject (fortunately, the GStreamer library is fairly object-
oriented). The plugin works by marrying a C object to a Smalltalk object
so they must GC the C when they release the Smalltalk objects. However
a pipeline of C objects will crash if all are released ineptly on its married
Smalltalk object’s death; you must avoid the double-freeze problem.

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 59
Finalisation is when your code tells you that a Smalltalk object has died or
is about to die, having gone out of scope. Thus a Smalltalk object married
to a C object gets a message which prompts it to tell its C object to go away.
(There is also resurrection, a horrifying procedure which indicates bad
code.)

A GStreamer can be a source (microphone, camera) or a sink (e.g. display)
or both (audio comes in, gets altered and is sent out again. GStreamer
objects are referred to by name and there is a command that lists all the
installed elements. An element is then put into a pipeline or bin. You must
then hook it up to show how the data flows between the elements. An
element has a pad, either static (always there) or dynamic (created at
runtime). A volume element would have a static pad but the OGG would
have a dynamic one.

A pad can be asked for its capabilities: it returns a mime stream of what it
provides (source) or consumes (sink). He showed a video device returning
its settings. You could tell a pad ‘you only understand 640 x 480’ to control
elements. John showed an example of creating a tone generator on an
ALSA platform (LSA means Linux Sound Architecture; what the A stands
for he does not know). He created an element for a source data note
‘audiodtestsrc’ that plays tones:
audiodtestsrc := GStreamerElement
elementfactorymake: ‘audiodtestsrc’
name: ‘source’.

added a converter element and volume controller element, and finally a
sink element to talk to the ALSA hardware. (One would of course have
helper methods to hide code like this in real use.)
pipeLine := GStreamerPipeline name: ‘My-Pipeline’.
result := pipeLine addElement: audiodtestsrc.
result := pipeLine addElement: audioconvert.
result := pipeLine addElement: audiovolume.
result := pipeLine addElement: audiosink.
result := GStreamerSystem default
linkElementSrc: audiodtestsrc toDest: audioconvert.

result := GStreamerSystem default
linkElementSrc: audioconvert toDest: audiovolume.

result := GStreamerSystem default
linkElementSrc: audiovolume toDest: audiosink.

pipeLine setStateTo: #playing.
pipeLine setStateTo: #playing.
pipeLine setStateTo: #pause.
pipeLine setStateTo: #null.
pipeLine release.

The lowest level method setKey:toStringValue: connects to evil C
typing which has to go on somewhere; double-dispatching hides it as best
it can. See the gst-inspect Unix command to get info on an element: it is
very helpful in deciding what capabilities an elements has. The
waitUntilErrororMessage:upToMilliseconds:

helper method returns on a range of conditions: end-of-stream, end-of-file,
error message, 5000 milliseconds.

60 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
He then opened a Squeak image to show a more complex example: running
a test to play 5 secs of audio from an OGG file recorded from the internet.
The test quotes the unix command line equivalent. He ran it and produced
5 seconds of sound !

GStreamer lets you do complex video and audio streaming and push the
responsibility of having it work down into the framework.

requestForcallbackSignal: is ugly magic. The demux wants to
create pads but the base Squeak VM does not support callback to Smalltalk.
Their special set up knows how to interpret the pad-added message to
hook-up the pads.

John took the morphic mpeg player (written 8 years ago by John Muloney
based on work by John) and rewrote it to use GStreamer. An OGG file can
be audio or video or both and so they hang around for 5 secs waiting to see
if it has video or errors and then assumes it is audio. He let us hear the
audio, then opened a video (which he could rotate, etc., as usually in
Squeak).

Q. Who keeps the timing; Squeak or what? They wait for the next frame
and then blt it to Morphic. John uses a q object and a p thread. It is a waste
of time for audio to go to Squeak and then just be given to the laptop’s
sound system so in this example he has the audio in this going directly to
the audio output.

Squeak can be a source but there is still work to be done there (volunteers
welcome).

Lastly, playbin and playbin2 aims to figure out all the complexity of
arbitrary input and output. It works in some platforms for John but not on
OLPC; it could be made to work.

Q 100 native primitives? Calls for each type, to get attributes for a tab, set
them, etc.

Q. Use FFI instead of primitives? FFI is not offered on EToy environmnet
which is one of the targets for this.

Heating Control System with Smalltalk, Alfred WullSchleger
Alfred retired in February and had time to address the problems in his home
heating system. All control was handled by 230 volt switching of 4 relays
for the outgoing flow (on/off) the mixer (open/close/off) and the gas valve
(on/off). The system can know temperature going to the house (tv), the
temperature returning to house (tr) and the earlier/later temperature going
in and returning from the mixer (tvm, trm).

The house likes 30C < tv < 55C. The boiler temperature should never be <
40C (causes condensation, which causes corrosion). Boilers are small (< 10
litres) whereas radiators have 300 - 500 litre capacity. Thus the heat
capacity of the radiators far exceeds that of the boiler, so you must be

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 61
careful when opening the mixer. It needs to rotate to just the right angle.

The start point was the commercial control unit built into the boiler:
tklower and tkupper control when the gas valve is started and stopped.
Since the mixer is very inert, tk rises fast and the burner stops soon. When
the mixer opens tk falls fast and the burner starts again. He showed a graph
of these rapid rises and falls (six peaks and troughs in less than 20 minutes,
and this behaviour typically continues for 40 - 50 minutes after the system
starts), with frequent drops below 40C. By contrast tr varies very slowly.
Thus the boiler is incessantly switching on and off, stressing the gas valve
and not meeting the 40C requirement.

(At this point, Alfred’s slides tried to help us understand by not aligning
with the screen; he was using Dirk’s computer.)

He therefore worked on a new control unit that would meet tk > 40C except
for the first 3-4 minutes after startup. His hardware was a standard PC plus
USB (from Minilab1008 USB module with 8 AD and 2 DA analogue
channels; later, he will move it to a suitable small component on the boiler)
plus an interface he built himself to control the valves and temperature
sensors. All control and UI was in Smalltalk. The (manufacturer-supplied)
DLL for the Minilab1008 is pleasant to use.

He can control it remotely or though the house’ LAN via sockets for remote
operation. (Q(Noury) Plain sockets, not distributed framework such as
OpenTalk? Alfred was accustomed to using sockets in this way in his work.
He also has very small commands, just changing temperature bounds.)

He then made a simulator that was independent of hardware. He proposed
3 phases:
• early heat from cold boiler with tk < tmin, only tk is interesting,
• intermediate with tk > tmin, tv < tvdesired
• normal running with tk > tmin, tv ~ tvdesired, and tk should be as close

to tv as possible
(of course, he only realised this structure of the problem after a period of
experimentation). The minimum energy needed is given by the formula
Emin = c*mass of water in radiators * (tvdesired - tv). When Emin is < 0,
the house has a reserve of energy. When Emin is > 0, we do not switch off
the gas valve. This means that the mixer must be controlled very finely to
avoid overheating or underheating the boiler. This phase can last for a long
time, hours perhaps. Only when Emin is <= 0 do we revert to the
hysteresis-style control (similar to that of the commercial unit). While we
have 0 > Emin > EminMaximumReserve we do this and if we exceed the
maximum (10kJ) we switch off the valve hard, waiting until Emin has
dropped significantly.

The mixing angle is measured from the steady movement of the mixer
linearly from 0 to 90 degrees while the mixer opener is on. He always
closes the mixer for 2 minutes (it needs 107 seconds to close) to close it and
so get into a known situation. This causes tk to rise quickly. He then starts

62 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
to open the valve to a set value. After 900 seconds, the intermediate phase
starts and tv is also monitored, causing a more subtle behaviour of the
mixer, but the gas valve remains on.

He noted how tk moves significantly with tiny mixer motions. tv always
shows a bump when the mixer moves (output is near the boiler so r bumps
up and down as heat is supplied and then slightly more slowly is pushed
into the house) while the return values move very slowly.

Finally we reach the normal running mode. The mixer can be left at 90
degrees when tk is well above tmin. He finds he can manage it between 17
and 70 degrees for much of operation. Closing the mixer for 10 minute
periods when the gas valve is off conserves heat in the boiler.

When he started this work, the curves were not as clear as in his slides.
They wandered all over the place. Fine control of the mixer was the key
realisation. The start-up mode is more complex to handle than the steady
state.

Starting work in February was a good choice as the external temperature
rose and so he could study a range of states. However he must wait till next
year to see if it saves him financially or not.

One safety issue is to avoid steam. He guaranteed this by a software-
independent bimetal switch which turns off the gas valve when tkm>80C;
the boiler came with a manufacturer device that switches off at 100C which
he thought too risky.

He can also switch between his unit and the old unit by moving a single
connector. It is clear that his system is much more stable, less fluctuating,
than the commercial one. Smalltalk was a great environment to work in; he
could sit by the boiler and make live changes fast (important when the
boiler was heating up very fast) and switch to hand control of the mixer. He
could also see when his simulation did and did not match what the real
world did, so teaching him the scientific behaviour he was modelling.

Q(Niall) Commercial value? Yes, but having worked all his life in banking
and similar he has few contacts. Anyone know any top-end boiler
manufacturers?

Croquet/Cobalt: An Open Collaboration Architecture for Education,
Robert Sheperd and Julian Lombardi, Duke University
Rob Sheperd has founded eduVerse (group in Amsterdam) and is talking to
surfNet, seeking to interest them in Croquet. He wants to work with
Squeakers here. He then called Julian Lombardi who gave the talk, his face
in one screen, the slides in another.

Julian summarised the mouse, window and office metaphor that our
computers use now, then gopher and the world-wide web. The world-wide
web uses the metaphor of the document. It’s good for that and poor at, for
example, presenting talks like this. Google is a great search engine for

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 63
finding information you want to have. At his university, they introduced an
online library catalog - and people complain they now cannot simply
wander round the stacks discovering things. They have lost the context. If
you want to show the context - the books on the shelf that has your book,
the other people browsing that shelf - how do you do that.

The web works by replication of data. VirtualContext systems such as
second life rely on this replication of data; they create a virtual world on
the server. A client accessing that virtual world needs to ask incessantly
about what is happening in that virtual world, unlike reading a web page.
Many clients talking to a second life server creates a huge load; 20-30
people at most can be handled by a single server.

Croquet wants to make virtual worlds, and deep interaction in virtual
worlds, available to millions. Companies that serve virtual worlds today
have server-oriented financial models. Croquet/Cobalt aims to avoid the
problem by replicating computation: each client has its own computation
and synchronises only when things change, communicating with pier-pier
mechanism called Teatime.

They snapshot the world from time to time: if a client switches off and later
reconnects, they get the snapshot and later messages from any pier.

Croquet will be open-source under MIT. They are funded by the Andrew
Mellon and the NSF.

He then demoed - and immediately lost signal. A quick reconnection sorted
things. The demo is available to ran over the web

(There is also QuackForms, a commercial company, with several Croquet
architects working there, that is commercialising some Croquet
technology. He is focusing on open-source efforts.)

Pier-pier messages are timestamped and executed in order of timestamp for
all participants. He showed two users moving a window within a window
(usual Alice and Rabbit avatars). Collaboration comes naturally in this
stateful system: Julian can edit text in a subwindow and so can the rabbit.
Portals resemble hyperlinks: avatars walk though portals to other worlds.
The rabbit walked through a portal, then created another world and entered
it. Julian then picked up the world/portal and moved it to a third world.

Croquet can access remote applications., The rabbit launched the Squeak
chess game (2D, projected on a screen in 3d croquet) and played it with
Julian. Via VNC they could project many external applications from
Windows or Linux or wherever, not just Squeak applications. He showed
an avatar carrying around a screencast (of him lecturing, I think) projected
into Croquet.

He flew around the helicopter and showed the demo of drawing a shark in
2-d, rotating it into 3d and making it swim.

64 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
Next he projected a Flash screen - in Croquet Flash it can be shown in
perspective because it is projected into Croquet, even though naturally
Flash only accepts isometric transformation.

Having demoed Croquet, he next showed Cobalt. Croquet has been under
development for 4 years (depending how you count, he said: I’m sure it
was doing some of what he showed in 2003). Croquet is a development
environment. Cobalt will be an application. He dragged a jpeg image from
the desktop to the cobalt world. Cobalt is making Croquet usable to end-
users - the ones who will create virtual worlds. The Cobalt avatar was much
improved over the basic Croquet avatars in terms of its movement and
appearance (but he was much less characterful than the rabbit and Alice -
just a typical PC figure).

They have Jabber (rendezvous server), heads-up display tool, terrain editor,
etc. He added a turtle from a repository (Niall: clearly Croquet is turtles all
the way down :-).

Q. Recent rewrite of OpenGL and deprecation of a number of functions
will force rewrite on you? Yes, they will have to at some point but for the
next year they are focused on getting this out the door. They are poorly
funded and relying on a community-based effort.

They aim to release Cobalt/Croquet next summer. Croquet was a top-down
project. It is not any more. There are 12 people actively involved in croquet
development; he would welcome involvement from people here. Visit
croquetconsortium.org for the roadmap. And things not on the roadmap are
also getting done - a group in Malaysia is integrating FreeCAD which was
not on the roadmap but they thought it needed to be done.

Madeo: a CAD tool for Reconfigurable Hardware, Loic Lagadec
Madeo is from the University of Brest. Refactoring, reuse and agile
development also exist in real hardware. Co-processors can have dedicated
and dynamic instruction sets. Reconfigurable hardware is a way to build
these. He is looking at very hardware programming at a very low level:
take two input signals, decide what output should they compute.

Q(Reinout) Static or dynamic? the idea is to change e.g. a portion of
memory at a time while using memory.

The targets are FPGAs and the eFPGAs that are coming on the market.
These could be used for implementing hardware VMs amongst many other
things.

It is a very complex task to program these circuits. Loic seeks to apply OO
methods to this task. He has been working in this field for ten years. Their
first task was to build a framework to map high level code to circuits for
one specific target (XC6200 from Xilinx), to learn all they could from that.
They then generalised to more targets. He showed a screenshot of their
system with circuit diagram displayed and an inspector open on a
HardwareContext. He had various implicit assumptions in the first model

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 65
which use corrected.

He opened the system and selected a target architecture. A complex
indented text description listed the functions and their interconnections of
the architecture.

He opened a box array diagram; each box was a switching element. He
moved to a diagram of connections and selected some functions. He
opened a table of input combinations mapped to results. He built his
choices, returned to the box array and placed his circuit on the board.

They use the meta-modelling tool from Alain Plantec. They use the visitor
pattern in several places in the tool. The modules are pluggable to allow
various routes in from application specs and out to EDIF, C-like code and
other outputs. In this domain, these results must be validated by standard
tools, so must be exportable to them, but they are Smalltalkers and also use
SUnit.

Madeo has been used in several projects and is open to third party use.
Development lessons he learned: meta-modelling is a cost killer. When
exporting code, target your partner’s reference language; treat partners as
clients. Don’t show partners that you work faster than they do; they will
become suspicious. Say the next release is in 1 month, not in 1 week. Treat
validation as very important: your code must still work with the latest
release.

Q(Reinout) licence? Not yet clear but they are happy to send an image
tomorrow (“Don’t say tomorrow, say in 1 month” :-).

Q(Eliot) Optimise and download to chip or execute globally; how far have
you got analysing that? (I lost some of the discussion: background noise)
You want to map very high-level behaviour so can we have a semantic
framework in which you could study the value of mapping a dictionary into
associative memory? That is above what they are doing today.

Q(Eliot) Time to market in games is vital. Some functions have been using
lazy functional programming languages. The cell is a coprocessor with
very limited resources. Does the Smalltalk machine dynamically manage
the coprocessors? Loic has seen talks on using FPGAs to manage resources
dynamically. A student is working on it. Problems are to decouple memory
access from computation and to build the pipelines.

Development Tools and Techniques
Exploratory Modelling, Rob Vens, www.robvens.nl, rvens@sogyo.nl
Rob has half-an-hour to describe what has taken him years to understand.
He thought the best way to do it was just to do it. When he does xM with
customers, he has to tell a story first, else they will stay in their own
familiar mindset. Most businesses do not have a language to express
themselves. They may think they have but in fact they automatically fall
into business baby talk, “explaining things so simply, they’ll understand”.

66 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
Business has been living with IT for a long time and having a lot of
problems so they talk as if they were computer technologists. So when not
talking business baby talk, they talk the language they think Rob will
understand.

Thus Rob tells them that the world they live in is the world he will mirror
into their software. In a mirror, things are not exactly the same as in the real
world. Mirrors turn some things upside-down or back-to-front. When you
mirror the real world into the software world, things become alive and
living beings become dead. Accounts and Products become alive and do
things, whereas the accountants and product managers become
incapacitated. In Disney, doors open themselves, teacups walk around. In
the software world, products sell themselves, accounts transact themselves.

Domain-driven design is very important to the Smalltalk community.
Dynamic languages are becoming popular, closures are becoming popular,
but also domain-driven design are becoming popular. (Reinout: people
model the solution domain, not the problem domain.)

The business owns their domain model, not (usually) the GUI, security,
etc., technology components from which it is built. Technology
components are there to synchronise the mirrored model with the real
world. Good technology is invisible.

As well as this active-passive switch, domain models can exhibit time
reversal. They are constantly moving. A principle Rob uses is that models
are evolved by adding new components: the existing components do not
change.

Bravely, Rob then asked the audience for a problem on which to show his
approach. He got one: a company collects old metal in containers for
recycling; the containers are distributed round the country, then moved to
central locations and emptied, then moved back again. At the end of the
year, 400 of their containers are missing. How can they track them?

Rob starting modelling at the end. That is a key rule in his approach: first
ask, “What is the situation you want to end up in?” At the end of the year,
you want to have all your containers in a location and you knowing what
that location is. Rob opened a vanilla VW image and created a package for
the model. (This never bothers customers - he just says he needs a place to
keep the model.) He opened a workspace and did
Container new.

(This container may live for a few days or a few weeks while the modelling
session changes its methods and instvars a lot - only Smalltalk can do this.)
He sent arriveAt: to the container, got DNU, hit define, wrote as a
proposal
arriveAt: aDestination
self unloadAt: aDestination

leading to a discussion of whether the end-year destination is the recycling

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 67
or whether it is the return to the collection point after recycling. (Again,
customers never complain about seeing the debugger). Rob stressed this
time-reverse approach: he is working back from each end state to its
predecessors.

He had a customer with a very complex problem domain. He extended the
inspectors to let him drag-drop (important for customers). The customer’s
people were very pleased; they liked the sessions and found they
understood their own problem domain much better than before.

He is rewriting his MyGold personal finance system using this technique
to guide the rework and will publish papers on it.

Q. Eric Evan’s book? It is interesting but very technology-oriented.

He built an XMI exporter so models constructed this way can be exported
(and imported to C# in this customer’s case).

What Smalltalk can Learn from Java, Philippe Marschall
At the end of this talk he expects people to say, “we could build something
better than this.” So do it!

JMX monitors and manages images. Images do go bad in production on the
server. In general it happens slowly: memory problems, too many sessions,
whatever.

In the past, Philippe just used a work space: some allInstance checks,
state checks and so on. This does not scale well, is not automatic, etc.

You can build your own: you need to convince your manager, write it,
debug it, and maintain it - forever. It is yours and you alone use it. Seaside
won’t use it to tell you how many sessions there are. Glorp won’t use it to
tell you its cache size. If you hack into Seaside, Glorp and so on to use it,
you must maintain your changes to those base products.

JMX lets you query values, invoke some operations and receive
notifications. There are in-image and ex-image APIs. He opened the
external UI and viewed data on an image: how much time was spent in GC,
in JITing, memory state, etc., as graphs and data. Another widget showed
a list of web sessions with their age and state, the database sessions
likewise, and much other information. He exercised the app and looked at
changed values.

Your Swiss manufacturer does not call the moon face and other aspects of
your expensive watch ‘features’; they call them complications. Features
are bad: they cause bloat and confusion. However, just as Swiss watch
manufacturers discovered they needed ‘features’ to sell their watches, so
we find that features are good: they sell your software. So you want to let
people take the features they want. Plugins are one way of doing this.
Plugins are good - provided they work together. Will your Squeak image
still work after you load this package? Module systems break your

68 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
application into feature sets and also make it easier for you to add small
features.

OSGi is a module system used by Eclipse RCP, GlassFish v3 and smaller
application servers like Sling, etc. Application servers that supplied all
their features as standard could take 20 minutes to start up. GlassFish v3
starts (in a second) as a core that can only serve files, with much else
loadable.

Maven 2 is a build tool. It aims to work in 4GL declarative style. Try
releasing more than a dozen Seaside subprojects to SqueakMaps and
Universes. It is not automated and you have to script a lot of stuff. We
should make an object model of a project and publish it, not script.

POM lets project builds inherit from other projects. A Pier subproject, for
example, would inherit a lot of stuff from a general Pier project. He showed
the dependency graph of Pier Blog. It needs RSRSS and Pier-Seaside,
which needs Pier-Model and Magritte-Seaside. Pier-Model depends on
Magritte-Model, Pier-Seaside on Seaside.

Dependencies are transitive, may be optional, may be only for tests, for
development or for deployment. All this data can be generated into a
project’s home page and other tools.

ANT was mentioned in discussion. But you should not use it in general.
JMX and OSGi are not good. Java has an unerring gift for doing things
wrong so we should not aim to be compatible with them or imitate them.
We should aim to model abstractly the problem these solve, then build that
abstraction.

Q. How long to build these? In a week, you could have Maven working,
then extend it.

Q(Tim) Some Java sites have build servers? You check something in and it
gets built and tests run. SqueakMap is littered with things which will not
even load.

Advanced Techniques for building Testing Tools, Andrés Valloud,
Cincom
Andrés thanked Stephane for mentioning his books then recapped SUnit.
Tests pass (true), fail (false) or raise errors. Andrés had to write a test tool
for hash functions. Hash functions analyse a particular dataset with a
particular hash function and produce a set of statistics, which is rather
richer than true, false, error. What object caused a particular hash value to
appear. What collisions occurred.

Thus your results are a collection of small integers. He therefore reified the
evaluation context. The Distribution sends resultsInTheContextOf:
to the EvaluationContext which holds a hash bucket dictionary.

He also had a hierarchy of datasets. He showed the hierarchy drop-down in

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 69
the tool, a standard class hierarchy. However some data sets are repetitive
sequences, some are sequences of 4 letters, some are Dutch words as
against English words, and so on. These do not share much code so have
no common superclass but this commonality of type is important for the
tests: does a given function do well or badly on given types of dataset.
There are also ad-hoc datasets intensionally-defined by e.g. allInstances or
a collect: called on another dataset or whatever and these also have no
natural identifying superclass. Lastly, he sometimes wanted to handle the
hashed result collections as input data.

He therefore created AbstractDataCollection whose instances behave like
the classes he wishes existed for these non-class datasets. Polymorphism
lets classes be objects so it also lets objects be classes. :-) This has method
subclasses that returns these dataset ‘classes’, while the actual class that
the dataset is an instance of is returned by classToImpersonate, and
LeafDatasetMetaclass>>new just returns the dataset.

He returned to his tool and showed the ad-hoc dataset hierarchy with its
not-classes. He opened an inspector on the Smalltalk dictionary and
adopted it as another dataset in his tool upon which to do hashing tests.

Andrés wrote various extensions to SUnit for validation and benchmarks.
He therefore needed to extract all hard-coded references to e.g. TestSuite
in methods so they could be subclassed. He also extended runCase: to
handle the greater range of exceptions. He did not want to call on:do:
over and over again. He instead double-dispatches on exception handlers.
on: ...
do: [:ex | ex occuredForTestcase: aTestCase

inTheContextOf: self]

(self is a TestResult). Thus he can add validation and benchmark SUnit
failures without overriding code.

When he wrote his book he had a lot of string matching checks (7 * 56 lines
output for a typical test) which was very tedious. He was running
essentially the same test for many pairs of patterns and matching result
strings. For benchmarks he wrote multiple setUpCaseA1, setUpCaseA2,
etc., methods with running the test meaning setUpCaseA1, run, tearDown,
setUpCaseA2, run, tearDown. These also set whether failure meant a little
slower, 10 times slower, etc. He also created modifications of the basic
tests via e.g.
self setUpCaseA1.
self makeDataUppercase.

but the more he extended SUnit the more he was concerned about
incompatible SUnit mods (for example, lots of people do logging
extensions to SUnit and he felt his work would be incompatible with
theirs).

He therefore created a new framework: Assessments. He asked why we
have to create an instance of TestCase. He thought that having a separate
test for each run in a given context was like giving someone a questionnaire

70 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
with a separate sheet of paper for each question instead of one sheet for all
questions. An Assessment is a single instance that refers to a large number
of Checks (equivalent of TestCases) on an AssessmentEvaluationContext.
This has a result policy which returns a given Assessment result; the policy
handles whatever logging you want.

The Assessment Result has results of type A, results of type B and so on
and knows which checks returned type A results, which returned type B
and so on (so basic SUnit would have pass, fail and error as its types, his
validation and benchmark would add two more types, etc.). The
classificationTag for any result is its class. A Check has a receiver,
selector and arguments, and it also has an executionPolicy. Run is one
policy: get the result and don’t show the debugger. Debug is another: who
cares what the result is, just show me the debugger. Thus he has a set of
polymorphic exception handlers and the Check knows how it should run.
So he can have execution policies for SUnitVM, for SUnitToo, for SUnit.
(Someone’s computer or phone played a sad tune at just this point. Andrés
picked that up as, ‘Well, if you are in SUnit, indeed that is sad for you. :-)

He maps SUnitToo exceptions into Assessments exceptions; receive an
exception, raise another. However he still has SUnit TestCase subclasses
and SUnitToo (different) TestCase subclasses. He therefore uses the
Metaclass trick he showed above to see them all and call them all from his
Assessments UI via
pretendToBe: self testCaseRoot from: someSuperclass

He opened an Assessments evaluator and ran some Assessments tests.
Then he expanded the AbstractSUnitTooBridge, ran some tests, found a
failure and debugged: the debugger opens in a stack where you only see
SUnitToo stuff; no Assessments stuff gets in the way.

Q. This is available, licensed? Yes it’s available, feel free to use it. He will
discuss licensing with Stephane then add an MIT or similar licence to allow
maximum use and minimum inconvenience.

Starting fresh every morning, rebuilding a development image every
day, Yann Monclair, JPMC
Yann went to university in Brest where he got hooked on Smalltalk. Kapital
was released in 1995 and now has 22,000 classes (base VW 7.3 plus Envy
is just 2,200 of these). Each development cycle changes 5,000+ classes
(last cycle change ~ 7,000). The production image is 90Mb, the
development image is 120Mb.

A small team can resynchronise their code bases easily. A multi-site, three
timezone team needs a process. 60 - 150 classes change every day. Every
day, 25 change sets of 5-8 classes are applied. On average, there will be a
class change conflict every week. There is also duplication of work if you
do not resynchronise images. A large change can be hard to remerge (he
speaks from experience). It is better to decompose your changes into small
units and release them day by day.

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 71
Prerequisites: the Kapital rule is to make Envy happy. Envy by nature is
very grumpy and complains a lot.

A final reason for rebuilding your image every day is to discover unknown
dependencies, much better than ifDefinedDo: [...] which is a recipe
for hard-to-track silent problems.

Envy holds code in Applications and Configuration Maps. It also versions
classes and methods, its unit of granularity. To build the Kapital image,
they load the top-level map, which loads everything else (or maybe
sometimes fails and carries on having told you on the rapidly-scrolling past
Transcript). Then they validate the build. They run SUnit-style code-driven
tests to verify specific methods work. Then the do data-driven end-to-end
testing and checking that the results are as expected. This is called the
SmokeTest. These smoke tests include deep scope tests - compute today’s
value of every product in Kapital - and wide scope tests - verify in detail
some functions for selected trades only.

It takes 40 minutes to build an image and then 2 hours to validate it.

The Kapital launch command gets today’s image and loads your current
unreleased working code into it, ensuring that if some specific action is
needed to make your image work, it’s absence will be revealed.

Q(Arden) Development or production? Development: production release
process is formal in a bank!

Saving an image, common in Smalltalk generally, is doable but not often
done in Kapital. They prefer saving code to Envy and loading new each
day.

Breaking the build will happen. The first thing to do is identify the issue:
failing tests, uncompleted build, successful build but will not load. Tests
can fail for good reasons - someone released a test as I released my code -
or for understandable reasons - not enough time to run all tests before
rushing out this fix.

Uncompleted build: you find the offending code change. Most often it is
prerequisite issue; a method not yet introduced or a class or variable not yet
declared.

Successful build but failed load means that Envy does not load all the way.
It got so far, raised a warning e.g. it tried to do a code override which Envy
will not tolerate), then does the save and testing anyway.

If the build failed, that means that yesterday’s code changes are not
validated and today’s are beginning to accumulate so you must fix as fast
as possible.

Failures can be because your method is not yet there (e.g. an initializer uses
the with:with:with:with:with:with: extension, not yet loaded) or

72 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
clashing code because Kapital loads class versions, following Envy.

Q.Make Envy do reduced conflict merging of class definitions and method
defs rather than whole classes? Yann preferred to keep Envy happy as is.

Q.How do developers get their code into the fresh image? The developers
put their modified class images into a system (called FDPs) and they load
their current one(s) into the fresh images.

Smalltalk Standards Report, Bruce Badger
I only caught the end of this. See http://smalltalk.gnu.org/wiki,
http://lists.openskills.org/ and click on ANSI-Smalltalk.

There was discussion of tests. Do we need tests for every STEP: Bruce is
recasting the ANSI-Smalltalk syntax as BNF and that would be a review or
social use thing rather than a testable thing. But generally, yes.

Q(Dale) The rubber meets the road when a STEP is implemented and the
vendors say, “We support that step.” Bruce agreed.

Syslog, Bruce Badger
RFC 3164 is a BSD ‘standard’ for logging. “For the self-aware organic
units...” says the spec but no it is for computers, not us or aliens,
specifically for sockets. Messages are 1024 octets in length with PRI,
header and message. The Device sends messages, the Collector receives
them and stores them and a Relay will filter and route them (and acts as a
Collector and a Device as well).

OskSyslog implements this (in VW), is in the public store, and can be used
by anyone. He typed logger hello, world on the command line and saw it
echoed. Then he did the same in OskSyslog. Nothing happened because by
far the majority of syslog servers are not listening on UDP by default. They
mostly listen on local *nix sockets. So when developing this stuff, by
aware you will need to add a -r and restart the logger.He then executed the
Smalltalk code - and met the usual demo hiccough - he was sending it to
the wrong IP. Finally, it echoed.

OpenSkills runs many http servers on Gems and they all get attacked with
bogus requests and these get logged to local log files and it is a lot of work
to review them. Now he can access any syslog device. You can log through
TCP instead of UDP, (at lower throughput, of course) but ask yourself, if I
cannot afford to lose a message or three, am I really doing logging?

This listens on port 514 so you must run as root or use iptable to redirect
traffic from 514 ti a port with number > 1024.

Only one syslog server can listen on a port at a time so you must switch off
your machines syslog server on that port in order for your OskSyslog to
take its place. He did this and saw some messages on the Transcript.

A Collector receives messages and does something with them: writes them

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 73
to a file or a database or counts them or whatever.

There are heaps of tools out there for analysing syslog messages. Syslog
can be added to Toothpick or whatever as a source or as a sink, so
Toothpick can do the logging and syslog then converts these to let you do
extra-image things with the logged events using all these tools.

VMs and Smalltalk Environments
Keynote: Cog Back to the Future part 2, Eliot Miranda
The motive for seeking a better VM is better server performance and better
user experience in virtual world apps and similar.

Why called cog? Well it is a small cog in Squeak, it can mean cognomen,
it suggests a logo (and it let him show the Honda Accord ‘when things just
work’ film; afterwards he showed the follow-up film on how it was made:
six months of trying to make it work - which Eliot felt was exactly like a
programming experience.)

The VM is being built in baby steps: block closures solved (so goodbye
BlockContext)
tempVector := Array new: 1 ... do:

[... tempVector at:...
is easier than
| next |
...do: [:each | next := each binaryBlock...
^next

It is easier to keep the ‘tempVector’ around than manage that the temp
‘next’ can outlive the method that declares it and must have closure refs.

The task is to do a VW-style JIT. He has added closureOrNil.
MethodContext
instvars: ‘method ... closureOrNil receiver’

There are five new byte codes. Eliot uses a trick to have 2 opcodes in one
byte code for pushNewArrayOfSize:/pushConsArrayWithElements: and
four other combinations.

The image wants to use the context for everything: Seaside, the debugger,
etc. Mapping the context to the stack is complex when you terminateTo:
and don’t want to figure out the context-stack sizes for all the stuff you’re
throwing away. Andreas suggested to him do an interpreter with the same
context organisation as the JIT as a first stage. It may well coexist in the
final system because then you do not have to JIT huge methods: those can
be given to the interpreter.

A stack frame (see slide) records the caller, receiver, caller context,
method, flags and so on. A JIT knows the receiver and numArgs at compile
time but an interpreter does not, so the interpreter has to fetch the numArgs
and subtract along to get an arg. Thus in the interpreter argument access is
slower.

74 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
This is implemented and has underwhelming performance: some
benchmarks are 10% faster, occasionally 68% faster but the end-user
experience is not improved (maybe even poorer).

Eliot has hacked together a VM profiling tool which they have lacked in
Squeak for a long time and he will develop it further.

Eliot hopes to have an x86 fast JIT in April 2009. It will have a two-word
object header to allow the same representation in 32 and 64. It takes six
instructions to construct an arbitrary 64bit literal, needed to load a class, so
in VW 64bit, Eliot stored a 20bit index into a table of 220 classes. In
Squeak, he will use a 3 byte index to 224 table. Except when method lookup
must traverse the class hierarchy, the two-word object header will suffice.
A class’ id hash is its classTableIndex so you no longer lookup because its
hash is its index. Eliot would love other systems to use this.

Newspeak will have a different bytecode set from Squeak so he would like
to make the decoding of bytecodes not a big switch statement as in
conventional VMs but a table of functions so the bytecode set can be
pluggable, with pluggable generators. This is what Eliot means by an open
JIT and he hopes it will be used by Croquet and Newspeak as well as
Squeak.

The target is good floating point performance: AOStA - adaptive
optimisation - has been renamed Speculative Inlining - SIStA - since it is
optimising optimistically with guards. He will reify the PIC state, count the
conditional branches... The PICs provide type information that an image-
level optimiser can use to e.g. just add two SmallIntegers without worrying
about type and overflow, just do at: aSmallInteger without
checking. This causes you to create much bigger basic blocks between
sends. Thus it may be that low-level VM optimisers may be able to
optimise these large blocks; recently, he met the guys at Apple who do
LLVM and they agreed.

Q. LLVM is C++ technology? Eliot _thinks_ if the separation is done right
it will be usable.

The next stage, the quick (not just fast) JIT will be 2010 or 2011, earlier if
you will help. :-)

In questions, Eliot explained how he find it satisfying to figure out the
shortest possible sequence of instructions - like playing solitaire. The
difference between Squeak and Dolphin when doing fibonnacci is 5, and
Dolphin is a really well-written interpreter. Between Squeak and VW it is
a factor of 20.

Eliot is very focused on where he wants to reach - a solid fast VM for
Quack and the Squeak community. He is not doing research.

Q. Multi-core? There is an emerging consensus that conventional multi-
threading programming does not scale; people are looking for alternatives.

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 75
Squeak is looking at hydra: many images, one per core, with fast inter-
process communication. Eliot takes from this the decision that it makes no
sense for him to try and solve the multi-threading problem in the VM. He
will instead make sure his VM plays well with hydra.

This is the first product Eliot has been able to blog about as he works on it.
He enjoys doing so and the comments he gets. He will discuss offline with
Pharo re getting stuff used early.

Cincom Smalltalk: Present, Future & Smalltalk Advocacy, Thomas
Arden, Cincom
In Spring, Cincom released VW7.6 aimed at application developers,
ObjectStudio 8.1 for business analysts systems and a maintenance release
of OS 7. OS8.1 is the only Vista-certified Smalltalk (vista-certification
needed a lot of work; they had to write a new installer). It supports Seaside
(as VW does of course).

VW76 has new-look refactoring browsers. It supports Seaside, OpenTalk
for Seaside, the Glorp O-R mapping framework (GLORP) and MySQL.
Hashing is much improved. VW76 also improves the OSX VM greatly (he
sees a lot of Macs in the room so this is good news and you can rely on
continuing effective support on Mac platform). When they cancelled
Widgetry, they nevertheless moved over the grid widget and some other
stuff.

Where is Cincom going? Arden’s aim is to provide improvements but
always ensure that if a change forces customers to port then it makes their
effort worth it. Thus the emphasis is on incremental change and backward
compatibility where reasonable. It is also about making noticeable
improvements in areas that you can show, or at least explain, to managers.

Cincom wants to grow Smalltalk. Continued investment helps that on
itself, as does advocacy. Embracing new exciting technologies like Seaside
(and adding to them: Web Velocity).

They get ideas of where to go next from Customers, internally (engineers,
the star team, marketing) and the community. Arden asked for ‘9 for 09’:
three things to fix, refine or replace, three things to add, three things to
remove (and then he added three areas to innovate).The results were:
• make the UI look modern.
• Store performance in large installations needs to improve. Store also

wants more robust merging and better config management. [Niall: I
assume this means line-ups.]

• Fonts need improving and more internationalisation is wanted so
customers can penetrate more markets. They are looking at a CLDR
solution.

• VMasDLL lets VW be a (better) part of a larger solution. The C
interface speed and tools should also be improve.

Multi-core CPUs are becoming common so we must leverage them; this

76 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
really resonates with customers. Some solutions are easy, some are hard
and controversial.

What made it: CLDR, 64bit VM, Graphics (Cairo), GUI Infrastructure,
Graphics Designers.

Q. Reinout? Look nice and be usable can differ, especially when you
employ professional graphic designers; he speaks from experience. The
debugger icons have changed and had to be relearned. Arden notes the
point; it has not started yet.

OS8 will have a GUI update too, and the classic modelling tool will be
enhanced.

What else made it: shadow-loading, atomic loading, DLLCC speed, high-
load thread safety when communicating with sockets, etc. They will also
introduce posix compliance on delays (e.g. handle when long process goes
past daylight saving change deadline).

Multi-core made the list: something will be done there.

Advocacy: one of their aims is giving current customers information to
help them justify using Smalltalk. They give customers slides and info so
they can argue it is a safe powerful choice. Another is to let past users know
it is safe to return.

Perception of Smalltalk is changing. He showed a Gartner group report
(not in readable-size font, sorry). Prior to this December 2007 report
Smalltalk was listed as ‘elderly’ (not a good rating: means, “flee from
this”). Gartner has now listed Smalltalk as ‘mature’: (means, “it is safe,
move up to the current release”). Big organisations use Gartner. He is also
very pleased with the number of people at this conference.

There is a whole new generation of managers and developers who do not
know where Smalltalk came from. Now that Smalltalk is having its second
surge, we must tell them. Look at the computer in front of you: its mouse,
icons, drag-drop. It was all invented at Xerox Parc in Smalltalk ‘The
Technology that invented the future’. The office metaphor (desktop, files,
etc., also came out of Xerox Parc). It was invented by a group that
reinvented the language every two years.

Q. Stephane noted that while this is impressive to people who care about
history, some modern Python developer often says, “yeah, great but that’s
history man. What’s the relevance today?” Arden suggested emphasising
that it did not just invent one thing but all the things that developer uses,
and that a modern version of it is around today.

Smalltalk is a general-purpose high-productivity tool. It is portable,
accessible (full source code etc.) and fun (which for managers means better
employee retention). It is also an education: many developers will say, “It
was not till I learned Smalltalk that I really learned OO.”

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 77
“Smalltalk was ahead of its time”. Smalltalk still is ahead of its time. Other
languages borrowed the obvious things from Smalltalk. They missed the
subtle things. Steve Jobs visited Xerox Parc (quote is from ‘Triumph of the
nerds’): “They showed me 3 things: I was so blinded by the first I ignored
the other two” (one of which was Smalltalk). Others, like Steve, are so
blinded by raw OO they miss other things in Smalltalk. They miss closures:
other languages add control structures; Smalltalk can add any it needs.
Smalltalk reflection is first class and so allows incremental exploration of
it. The syntax is a jewel in Smalltalk: simple, consistent, expressive, robust.
Alone of computer languages it was designed to be easy to read, which is
why it looks unlike other languages. Arden showed my Memo example. If
you are talking to an audience that may be disposed to think Smalltalk
syntax hard to read, show them a purpose-of-talk slide in English:
Memo
to: Ruby user group
from: Niall Ross
date: 2 sep 2008.

Smalltalk syntax
is easy to read;
is not weird.

Then show them the same slide in Smalltalk:
Memo
to: ‘Ruby user group’
from: ‘Niall Ross’
date: (2 sep: 2008).

Smalltalk syntax
isEasyToRead: true;
isWeird: false.

Having been able to parse and understand the first text easily (because they
knew it was English, not code) they will have a hard time claiming they
cannot parse and understand the second, and you can explain Smalltalk’s
use of colon, semi-colon and full stop (period) easily by referring to their
analogous meanings in the English version.

Developers in other languages hate having to work in the debugger. For
Smalltalkers, it’s fun. And snapshotting the image is like putting your
notebook to sleep.

Cincom is seeing significant Smalltalk growth: customers are buying new
licences and new customers are appearing.

He ran out of time so could not say much about Web Velocity: VW +
Seaside + Glorp + It is not targeted at you: it is targeted at a sister
department in your company (or wherever) who want to write web apps but
are not developers. Use this to grow Smalltalk in your organisation.
Changing languages prompts a lot of debate: choosing a web framework
causes much less.

78 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
Gemstone, Martin McClure, Gemstone
Martin is not enthusiastic about the Gemstone product because he works
there; he works there (for 10 years) because he is enthusiastic about the
product. Gemstone is a Smalltalk implementation. Most of it is the same as
any other Smalltalk. Martin will talk about what is different.

GemStone is a server smalltalk. You deploy by having a web browser talk
via Seaside to a GemStone server or having a client Smalltalk talk via GBS
to the server.

It is multi-user. Image-saving is a single-user model of persistence.
GemStone is as-if you could save your changes and have them be merged
with other users’ changes. This is done in Transactions: begin updates
your view of the shared image (‘repository’); you now see all the changes
committed to that point. You will not now see further committed changes.
This property - read consistency - is only per select statement in many
RDBs but in GemStone you will keep your consistent view until you
decide to update it. abort discards your changes and updates your view as
begin did. commit merges your changes and updates your view to that
merged result.

Merging always creates the possibility of conflict. Optimistic concurrency
detects conflict at commit time and fails the commit, letting you handle the
result (typically by aborting the transaction and redoing the work).
Pessimistic concurrency gets locks to objects. You are now sure you can
commit changes to that object.

Gemstone’s units of conflict are usually objects - two changes to the same
object is a conflict. Logically, changing an employee’s address and salary
do not conflict but will be treated as a physical conflict by GemStone and
happens rarely enough that it does not matter. However adding two new
employees to the same collection may happen often, so GemStone offers
reduced conflict classes, usually collection classes, named Rc... .

Not all objects are persistent. Objects that are reached from the Transient
roots (which are the session state array and the stack) will be transient: they
will live in your VM but noone else’s (just as standard Smalltalk GC
collects objects not reachable from the root(s) of persistence such as the
Squeak system dictionary). Persistent objects are those reachable from the
root of persistence, whose name is AllUsers.

Most Smalltalks are limited by memory. GemStone is not. It can handle
billions of objects, hundreds of gigabytes of data, collections with millions
of objects (so they offer an indexing and querying system).

GemStone is not an object database. It includes an object database but it is
a Smalltalk implementation. Because the OODB part is so tightly bound, it
is much easier to use than an RDB (which is why he changed his talk title;
at first it was ‘GemStone for dummies’ but in fact it’s the RDBs that are for
dummies :-).

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 79
Migration in a Smalltalk image when you change a class takes a few
hundred milliseconds. In GemStone that can be a much longer time; too
long to do always immediately. So GemStone allows you to have versions
of classes and migrate between them at your schedule. ClassHistory is an
ordered collection of classes that lets aFoo(1) isKindOf: Foo(2)
return true.

Q(Christian) Can you live with ten versions of the class? Yes. If you add an
instance variable, you may migrate all your instances to have it and then
add code that uses it. Or you may have the old instances’ class return a
default value where the new method is a true accessor.

Multi-user Smalltalk has to address security. A VM must access the
repository just as an ordinary Smalltalk must access the image, so
repositories have login and password. Some 10 privileges can be assigned
in various combinations to various users: can alter other users’ passwords,
can save methods, etc. They have object access policies (actually called
‘segments’ but ignore this name; it confuses everyone, so they are thinking
of changing it). There are read and write permissions, like UNIX
permissions, where read can do anything that does not attempt to assign to
an instVar.

Non-namespaced Smalltalks resolve names in the Smalltalk system
dictionary. GemStone has multiple system dictionaries which are held in a
symbol list. Bindings are searched for in each dictionary in the list in order.
Each user has a symbol dictionary (so an object can be hidden from a user
by removing its dictionary from their list but this is a mild form of security;
they may be able to get a reference to the object in some other way). In the
old days, Gemstone repositories were heavyweight things and not every
developer had their own, raising issues of making the symbol list suit all
users. Today, machines are more powerful and every developer has their
own repository just as they have their own image in other Smalltalks. The
main use of symbol lists is namespacing.

GemStone is not entirely headless. He executed code in VW to popup a
GemStone window from the COLA project that Ian Piumarta is doing. It
did simple UI stuff - type in box, click button, etc.

Q? SQL tools on a GemStone database? SQL assumes your data is
relational. It is hard to do something generic, though you could certainly do
something on specific data. GemStone is 25 years old and has not needed
it yet. GemConnect lets you connect to other SQL databases. (Bruce
Badger: the PostgreSQL drivers have been ported to GemStone so you can
emit SQL to dump data to PostgreSQL.)

Q. Speed v. RDB? In SQL the tables have (generally) fixed size rows and
use foreign keys to do lookups. A multiple join will be effortlessly beaten
by a GemStone pointer-following for most object graphs. The OR mapping
layer will also add some performance cost. A recent customer post said that
their Gemstone system was doing 700 transactions per second and their
RDB was doing 70 transactions per second on 3-4 times the hardware.

80 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
However you can always construct RDB-oriented examples which would
show them ahead.

MagLev: Ruby that Scales, Monty Williams, GemStone
Monty is one of the founders of GemStone; he’s been there since 1982. He
wants to get Smalltalk technology into as many hands as possible. To some
Smalltalkers, this talk should be called Ruby with Scales - how does it help
Smalltalk.

MagLev is a way to run Ruby code in a 64-bit GemStone/S VM. So why
should we care? Well, because it runs Smalltalk too. The more people who
run Smalltalk the better for all; there are a lot of rubyists. Monty went to
RailsComp in May this year. Obe Fernandes CEO of HashRocket gave a
talk about the worst rails code he’d ever seen (includes 3000-line methods)
and stated, “If you really want to know how to make stuff better, find
someone who has been doing Smalltalk for the last ten years.” There were
2500 people at that conference.

Why should Rubyists care about MagLev? Because it is a lot of things that
Ruby isn’t. MagLev is fast (Ruby is not as slow as people say, but...). It is
stable. It is scalable (there are some large Ruby apps on twitter, but ...). It
is distributed. It is persistent. It replaces a bunch of components such as
mongrels that you would see in a Ruby app with a single thing whose
components all work together. Above all, it is turtles all the way down. A
user saw a 15 times speed up going from Rails to MagLev.

We should each befriend 100 Rubyists and show them Seaside.

He showed Journal On Software (well known blog) quotes from two clients
about GemStone’s superior performance. A shipping company managed 70
transactions in Java on three times as much the h/w as managed ten times
as many transactions in GemStone (see February 16th 2008 post).

He showed the MagLev architecture: it is the GemStone/S architecture plus
some MagLev smalltalk extensions, then on top of that the usual Ruby
(Ruby core library, Ruby gems, etc.). They are trying to rewrite more Ruby
in Ruby (actually, in Smalltalk) to slim this.

He showed a side-by-side demo. He fired-up, opened a Squeak-tools view
and showed a GemStone browser with Ruby stuff in it. A demo to keep
rubyists happy types into the topaz interface: he typed Smalltalk code, then
Gemstone code. At the Rails conference, some people were simply (and
some were literally :-)) incredulous about what he did next: he ran the YAR
benchmarks that Rubyists use to compare side by side. Normally he starts
the Ruby then starts the stone of the MagLev to let the Ruby have a bit more
time and help reduce their incredulity (but not enough; some frankly
asserted MagLev couldn’t be actually doing anything to finish so fast; they
could not believe that they could build such a system in 100 days).

He then ran the short YAR again on the Ruby side (if he ran the long one it
would take the whole talk) and then went to the MagLev and ran the long

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 81
one which took very little longer than the short one which took almost no
time at all.

Q(Stephane) Method dispatch; Ruby can add methods to individual
objects, make methods private? MagLev does not do method privacy. They
handle object methods by adding lightweight singleton classes.

Q(Stephane) if the Ruby people have a fast virtual machine, will it bring
people to Smalltalk? Only consultants and book writers make money in
Ruby. They say they are trapped in the web ghetto by stability and
scalability issues.

Q(Reinout) will there be a Ruby calling Smalltalk, Smalltalk calling Ruby?
We have not decided. It is not technically hard to do. Ruby people like the
idea of hit a button and reload all your classes, so will they excuse
Smalltalk classes from that. (Follow-up Seaside on Rails? Ugh!)

Ruby has thousands of tests that are the best spec for what Ruby is (there
is no real language spec). They hope to give it to 10+ companies a limited
private beta and circa RubyComp (November 4th) a public beta. Pivotal
labs are redoing twitter; they are talking to them.

VASmalltalk 8.0 and Beyond, John O’Keefe, Instantiations
I’ve incorporated all the material, discussions and questions from John’s
StS and ESUG presentations into his most recent one at Frankfurt.

A Moribund Smalltalk still alive and kicking: The APIS
VisualSmalltalk IDE, Thomas Brey, Heiko Wagner, Jan Kaiser,
Andreas Rosenberg
Jan summarised the history of VSE. Digitalk published Methods in 1984.
He showed a screenshot of what it looked like then (“Now we understand
why Squeak looks the way it does”). In 86, they published Smalltalk V. In
1995, ParcPlace and Digitalk merged; just before they did, Digitalk
published VSE 3.1. No release has occurred since so it has been a challenge
to keep it running on newer platforms.

In 1999, VSE’s rights were sold to Cincom to support it and to Seagull who
own the code. Cincom released VSE3.2 as a maintenance release. Other
help was viral mailing lists. Raimondo in Argentina and others shared bug
fixes and tips.

VSE has no web technology features, no common controls, no unicode, no
multithreading support. (Discussion with Eliot, Georg and others: S# does
what Strongtalk does which is have one thread running at a time and
callouts to others. Smalltalk MT does have multithreading support and the
old ObjectStudio also has it but no more. Lesser Smalltalk also does it. But
it looks like VSE is hardly unique in not having it.)

Since many users have modified the base classes to deal with making it run
on recent platforms and with the above, integrating fixes between users can
be hard.

82 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
APIS provides Risk and Quality management tools. He showed some
screens, oriented towards dividing systems into components and thinking
about how these components can fail, how these failures could interact
with each other, etc.

They added a refactoring browser and a unit test browser. They tweaked
their code pane to do code highlighting, formatting, autocomplete (similar
to Vassili’s class search box). There is also in-place renaming of temps:
rename the var in the temp list and that is a rename refactoring applied to
the code. (If the method is in an incomplete state so that it cannot do a
refactoring, it silently fails to do the rename.) They have a configurable
formatter. These are not unusual in modern Smalltalks but it is of interest
that a such an old Smalltalk can look so modern.

Their Java Standard Edition 6.0 integration was developed independently
from JNIPort and JavaConnect. The used proprietary APIS enhancements
and some VM enhancements. It creates wrapper classes from .jar files and
lets you use the classes in Smalltalk, calling the Java machine to process
whatever calls the Java received. They find it useful to be able to use Java
libraries to get many features (e.g. Unicode) and integrations (to
frameworks, databases, etc.) that are not in VSE.

They use JNI for communication,. The Smalltalk VM had to add IEEE-754
floats and 64 bit integers.You create a Smalltalk SSL from any .jar file. You
can view, edit and compile Java methods and classes within the Smalltalk
IDE.

He opened a tree browser on a file with some Java classes, imported them
and checked for consistency (and refs in these classes to others not
available) and exported an SSL created from these. He called it and ‘hello
world’ appeared on the transcript. It could also say hello from named
objects.

He then opened a more complex example. It took a few seconds to open
and then showed a long list of icon-distinguished (for public/private)
Swing classes. He named a package to hold them. Running consistency
would indicate references to other classes in other packages that you would
need to import.

He then opened a hyperbolic application browser. He had created the SSL
previously so just had to install it and (deal with usual demo hiccough by
also loading the Smalltalk class that calls it and)
HyperbolicApplicationBrowser new open

opened Java UI code using Smalltalk data in a Smalltalk window. It ran
perfectly. He clicked and explored in the Smalltalk class browser.

APIS bought the code from Seagull, so are able to do these VM changes
and so on.

Thomas Brey and Heiko Wagner did most of the work.

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 83
Q. Typing? The datatypes are matched: Java string to string and so on.
They are wrapped, not replaced by Smalltalk objects. The VM does the
translation.

Q(Dan Poon and Reinout) Performance? Pretty good; the code runs on the
Java VM and of course there is the wrapper overhead.

Q. Smalltalk or Java? If we can do it in Smalltalk, we do it in Smalltalk. If
a library for e.g. XML parsing exists and is tested and robust, we use the
Java.

Q(Dab) VM mods? Mostly for the type conversion.

Aida and Seaside
Aida, Janko Misvek, Eranova
Alan Kay suggested in 1997 that every object should have a URL. Janko
knows noone else who has implemented that. anObject printString
is basic to Smalltalk. anObject printWebPage is basic to Aida.

Q(Stephane) Recursion? Primitives? On the web you can go from one page
to a second page and back to the first page; so when navigating a graph of
objects. We do not have URLs for primitives.

Aida supplies starter applications: Blog, Wiki, general Site. It runs on
Swazoo over VW.

He showed some Aida websites. (Some old sites are hard to put into
Smalltalk because they do not have clean CSS/content separation.) Dirk
Verleysen did a Belgian football team site. Nicholas Petton did a
TalkingSmalltalk site and Blog plugin. He also created a Smalltalk project
management system. BiArt is a commercial quality management system
supplied by Eranova (see Janko’s talk last year) and Scribo from this
product is open-source. eLogis is another process management system they
supplied. The Slovenian gas pipeline operator also uses them for their site.

Scriblets are embedded components. The Aida slogan is an edelweiss
flower. It implies that their system is very resistant to harsh conditions and
that they cover the web from sea level right to the top.

Aida/Web 6.0 and Aida/Scribo 1.0 have just been released. It runs on
Squeak, GemStone/GLASS, VisualWorks, and Dolphin. They plan to run
on Smalltalk/X (will be supported in 1 month) and GNU Smalltalk (gets
them closer to the Linux community).

There are 60+ on mailing list, 2 core developers, tutorials in French and
Spanish (and English).

In future, they will support tree-like navigation as well as graph-like. Major
domains are graph-like but tree-like is good for yes/no dialogs and similar
decision workflows. Thus graphs will have tree subgraphs. This will be
their way of doing some things for which Seaside would use continuations.

84 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
Aida MVC separation usually puts actions into separate methods but they
are thinking seriously of onSubmitDo: [self observee save] i.e.
allowing block callbacks, avoided before for fear of breaking MVC and
getting spaghetti code. Thus they may allow verification code but not
general code in such blocks.

Internationalisation is important: they have Japanese in their group. The
simple solution, largely in place, is to have the same web page structure
with different content for the different languages. In-place translation is
being thought of. Translations can be saved in methods.

They are producing a book (in French at first, in English soon) and making
some old Squeak sites (SqueakMap) look more modern to make things
more accessible to non-Smalltalkers.

Magritte Blitz, Lukas Renggli
This talk told us what Magritte is not, what Magritte is and what Magritte
can do, then demoed.

Magritte is not trying to model UML. It does not use code generation, just
visitors that walk the classes. And above all it has no fundamental link to
Seaside. a Plugin generates Seaside UI from Magritte descriptions but that
is just one application.

Magritte is an enhancement of Smalltalk’s reflection capabilities to define
an instVar as being e.g. a String with a label, etc. Magritte is extensible and
described in itself. Magritte editors can be used to edit Magritte
descriptions to alter e.g. a web application on the fly. It runs on VW,
GemStone, Squeak, Pharo and most recently GNU.

Magritte can build viewers, editors, validators and reporters (the Seaside
plugin provides all these for Seaside). In Smalltalk, you must write
initialize methods or you can instead use Magritte to define initial values
for your objects. You can use Magritte to decide what to copy and what to
omit when copying a graph of objects. It can be used to document your
classes. It can be used for DBs, XML and query generation, JSON. And it
can be used for end-user customisation.

Lukas opened Pier and edited it using Magritte web-rendered edit page.
Then he opened Squeak browser and showed a very similar looking form
generated by Magritte using the Squeak renderer instead of the Seaside
renderer.

He then added a ’ToDo’ field, again using a Magritte-rendered form (back
in the web) and gave it a label, set its options, etc., and saved. Then he
edited the page again and had the ToDo field appear in various different
ways.

Q(Christian) connecting between attributes? That is the weakest part of
Magritte. There is some code but he also finds he needs to add glue code
by hand.

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 85
Q. The new state for the ToDo field goes where? In a dictionary.

Q(Niall) Visitor subclassing, delegating? The edit layout that was the same
between Morphic and Seaside is a general layout superclass with Morphic
and Seaside subclasses. No more general subclassing or delegating pattern
has been needed so far.

Hands-on Pier, Tudor Girba
(Tudor’s slides still had bullets but he apologies for that.) The Pier CMS is
easy, cool and free. Lukas Renggli built Smallwiki, then Magritte and then
he built Pier as an application of Seaside and Magritte. Others then joined
in, including Tudor. He is speaking because he uses Pier and because Pier
is cool and is free; making such products more used is good for Smalltalk.

He opened a Safari browser on Pier. It shows the title of the whole app,
some text and the Seaside toolbar. He browsed around: the usual info,
licence data plus blog - and you can login (admin, pier).

More buttons appear: _Environment _User Management and so on. He
changed the title and saw it twice - on the current page and as part of the
wrapping environment page - the metapage. He went to the environment
page: it showed normal html for the overall page. ‘class title class’ means
that the title of the current page appears at the top. Instead he put ‘logo’ and
then got a red link (no logo yet) and clicked on it. He is prompted to define
the link type which he made a file, selected his logo file and saw the logo.

However it is not clickable. Pier uses an extension of the swiki syntax. He
converted logo to *+logo+>root* and now clicking the logo takes you to
the root of all pages.

Thus he can edit normal pages and administrator pages.

Web UIs are often rather clumsy in forcing you to use the mouse all the
time so he did CTL-E (was in edit page) changed some text and pressed
CTL-S and there he saw it. (This works for Pier whatever web browsers
you are viewing it in, but may use different keys on some platforms.)

On any page, he can do CTL-D (edit design) to be editing the environment
page. CTL-D also shows the CSS file. He made .a have colour green,
showed it, then edited it back and redisplayed (no change) and did refresh
(saw change); that is Seaside 2.8.2 extreme caching in action.

The structure of Pier is inspired by the Unix file system. There is a root and
a hierarchy. This if you go to CSS, you see ...root/..../css. So which
environment does a given page get. The root page has settings environment
and environment/css. Go to the information page and press CTL-D and you
see nothing: the page inherits from its parent (the root). Add CSS and your
page will show the inherited root CSS overridden by whatever you have
added. The environment of the environment is also environment.

He made a blog post, then decided he wanted a summary of the blog in a

86 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
main page. He added to the environment page, which is good practice - it
makes an added element more manageable - but is not essential. He added
a +postticker+ and added it as a component. There is a component for this
and he set its values to show the last two posts and so on.

He does not want to see this on all pages, so he wants all other pages to have
a different environment. He creates a new environment called _Main
Environment (the underscore prefix is Tudor’s convention to know what is
a meta page and what is a normal page). The code in main environment
points to things like logo and so on that should be in Main Environment but
are not. He opened it and edited its html to have absolute paths for e.g.
environment/logo.

However the much easier thing is to go to the old environment and say
‘copy’, changing the title to _Main Environment. When in a recursive
page, look at the first part of your URL. That tells you where you are. He
then made the other pages use _Environment, leaving the _Main
Environment to show the postticker. This was done as an environment
example. He could of course have added the postticker just to the main
page. He did not merely because he wanted to use explicit html to place it
and it is a pattern to keep that to environments and only use wiki-style
markup in the normal pages.

Q(Thorsten) versioning? Click changes to see what you have done. You
cannot see differences yet.

He browsed the Unix-stye permissions. He added the logo under
environment which is owned by administrator and can only be viewed by
the group. He wants everyone to see the logo so changed its ‘other’
permissions. (He had the usual demo hiccough; at first, he changed
permissions to the wrong thing.)

[Niall: when presenting Pier, start with set up environment and show how
it works, then do administrator. Stephane said the same. Presenting it in the
order Tudor used was as if one presented Smalltalk from the metaclass
diagram, and risked confusing the audience before they saw the power of
the approach.]

Tudor showed examples: moose.unibe.ch and www.esug.org (has just
moved to Pier). There will be a movie and documentation. There are
components for Citezen (bibliography tool), Blueprint, LightBox,
Randomiser (have you noticed that the Seaside slogan on www.seaside.st
changes), Top Feed, Twitter, etc.: all these are listed on the main page.

Blueprint shows 24 lightly-shaded stripes, offering a grid for arranging
your page. You can use these in layout. The environment can say where an
item starts and how many it scrolls over. This example is a fixed size but
they offer two fixed sizes and you could also make it scale it to the window.

A Pier Structure has children and subclasses Page and File. Structure
knows its Contexts which relates to a Command (such as Edit and Login).

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 87
A Structure has a Kernel which knows about Persistency.

So far is general: a Structure has an environment which is a Page. Seaside
is exploited by the fact that another subclass of Structure is Component
which lets you add any Seaside application. Context subclasses to View
which subclasses to Browse and Changes views. A Page has an
environment Structure.

Persistency: you can use image persistency as he and Lukas do (cron job
saves image regularly). You can also use File persistency or GemStone
persistency.

Lastly, Pier on the iPhone (“Good” - “No, it’s not good, it’s cool; this is
about making Smalltalk cool”). He opened the simulator, and showed how
the pages had been laid out to make them useable. (He could not show the
environment pages, probably because of a problem with the rights.)
Walking round the pages was fairly straightforward. It took 100 lines of
code to make it work on the iPhone. He also showed just browsing the
pages as if on a web browser but the iPhone layout is more useful for a user
making a quick edit to the site.

Q(Torsten) indexing PDF indexing when adding docs? Not by default.

Web Velocity, Jim Robertson, Cincom
Jim showed three pictures as metaphors of the developer without
Smalltalk, the developer with Smalltalk and the developer with Web
Velocity. The pictures were taken from the social event. (Yann was the
‘developer without Smalltalk’; he assured me the appearance of his having
raised his hand toward his mouth only to notice suddenly that it did not
contain a glass of beer was a pure artefact of the moment at which Jim
snapped the shot. :-)

Jim had a long discussion with Avi in 2004 explaining why Seaside was a
bad idea. He has changed his mind since. :-)

Web Velocity tries to avoid the flow breaks that occur when you work in
browser and debugger but present in Web browser.

He started WebVelocity in Firefox. The left side shows list of repositories:
the Cincom Open Repository, Jim’s local one on SQLLite, etc. Under that
is a list of apps. The bottom left is a list of libraries; things implemented in
Seaside that are not yet loaded; he can click one and see a lightbox with an
expandable list of the blessing comments.

Next he went to the page that walks you through how to build your web
velocity. The target audience is people who do not know Smalltalk, so they
have made the documentation part of the environment.

Next James clicked to create an app, typed ‘Hello World’ for its title.

He saw a page with left list of items some in red (e.g. Overview was red

88 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
because we’ve not yet written some documentation for it, Databases was
red because we’ve not configured any for it, etc.).

Jim got the standard demo hiccough at this point: “This worked last night”.
He worked on sorting it. James Foster turned off the network that could
have been confusing the system and Jim got a new build but it still did not
work. Eventually, after the talk, Jim worked out the issue: the combination
of a particular new Firefox 3 version (3.01 IIRC) plus the specific network
setup at CMI plus WebVelocity was causing the problem. It ran fine on
Safari, Firefox 2 and other browsers. Meanwhile, the demo perforce had
more discussion and screenshot than intended.

He opened the Hello app:
renderContentOn:
super render..
html text: ...

The browser shows him the syntax error highlighted in red. The Seaside
walkback debugger opened, highlighting where the problem was. He can
open an inspector in the debugger. He fixed and (would have but for the
demo hiccough) resumed.

He loaded an existing app and looked at Glorp mappings to the database.
aTable createFieldname: ‘id’ type: ...

He opened a very basic blog app, provided as a suggested start point for
users building blogs and similar system. He showed the drop-down list of
components available and the methods for one.

WebVelocity is building migration code. He discussed recreateTables
(again, demo hiccough meant he could not show it). Arden offered his
computer, on which the build was working. Jim created a new application,
then selected New Web Component from drop down. The main pane
showed its instance and class methods. He clicked to invoke
renderContentOn: html
html text: ‘hello there’

He can open several methods in the page and not have to accept the first
before editing the second. This is a non-modal method-editing system. He
ran it, then wrote an error and attempted to run, thence saw the debugger in
the web browser, fixed it and resumed.

Q. Are you eating your own dogfood? The Web Velocity website will be
written in this. The Cincom Smalltalk site will be transition to it as well
(but not the blogs as their code is stable already).

Q. Licence? There will be a non-commercial version and an online
commercial version to make it easy to acquire.

Q. Headless server? Just type visual.exe -nogui myimage.im

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 89
Q. When you save, that saves all the methods? No, just the one whose
context you are in when you save.

Lastly, he created a new application database.

Michael’s blog shows WebVelocity movies, as does the main Smalltalk
site.

Q(Christian) this will feed back into VW? Seaside 2.8 is in VW7.6. A lot
of the pieces of WebVelocity will ship in the standard release. Database
migration will be part of Glorp.

Q(Tim) WebVelocity final name (confusion with Java Velocity
framework)? We’ve settled on WebVelocity as final name.

Q. How are databases set up? If you populate an empty database using the
defaults, you get a pattern similar to Rails’ active record. If the tables exist,
it will read their metadata from the database and create the connection
code.

Seaside Evolution; things you never knew you could do, Julian Fitzell
Julian is co-inventor of Seaside with Avi. Seaside has been through the
Experimentation, Stabilisation, now Optimisation phases and Adoption is
where we’re going.

WebObjects was a good framework in Objective-C but moved to Java so
Avi wrote IOWA in Ruby as a fairly close port.
class Main < Iowa::Component
def all_people
Person.fetchAll()

...

and in the html
<ul oid=”people”
[@person.firstName] [@person.lastName]

...
<?
people {
item = person
list = all_people

}
>

but it only reached version 0.4 because Iowa was released in January 2001
and in 2001 they discovered Smalltalk. Seaside: Squeak Enterprise
Aubergines Server. Why aubergines? He wished we hadn’t asked: Avi
thought of it as a sound-alike to Java Enterprise Beans.
addBindingTo: template
(template elementNamed: ‘people’)
bind: #list toPath: ‘allPeople’;
...

and so Seaside 0.9 was born. He showed examples of conditional tags in

90 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
UML, and embedding code in HTML and so on; that was the architecture
of Seaside 0.9 - there wasn’t any. Everything depended on everything else
- the session on the components on the ...

So they made a major rewrite to Seaside 2.x (called Borges, after a quote
from ‘The Garden of Forking Paths’). They found templates just got too
big, too ‘magical’ and too hard to manage. (It got ported to Ruby, went in
a different direction and is still around somewhere). Seaside 2.0 added
callbacks for blocks and an html renderer. Seaside 2.3 moved the rendering
to the top of the architecture layers so other things did not depend on it.

After 2.3 they got into the stabilisation phase. Initially all component state
was backtracked and no session state was. Stabilisation reworked this. It
also reworked the rendering to the Canvas API so no longer having all the
combinations exponentially growing (button, anchor, anchorWithButton).
At around this time, Julian got a full time job and stopped working on
Seaside. Around 2005 Avi stopped working on Seaside in favour of using
it (to build Dabble DB) and Lukas and Philippe took it over. They worked
on optimisation and refactorings for flexibility, pluggability and so on.

Julian now feels we are entering the adoption phase with GLASS, Pier,
seaBreeze, WebVelocity. Documentation remains weak but there are books
and much on the web. To help documentation along, Julian will now
discuss architecture, metaphors and pluggability aspects that are less
known.

Slide of Seaside 2.9 architecture. Tests, examples and development tools
can be loaded or not. The core is the render loop and the components that
have them. Components use the Painter which uses the Canvas, and
Components use the Session Management. It sits on Request Handling
which converts Comanche or whatever requests to Seaside requests and
vice versa using a Server Handler of the appropriate type.

Q. Why Seaside request? Mostly it is for portability, to use Seaside with
any webserver.

The Painter is a place to hold html rendering code when you don’t have
session state. Earlier, there was a stateless component and he is thinking of
putting it back. Components likewise do not have to use the render loop but
normally will.

Q(Christian) Why do you make the html by way of a stream rather than as
a tree of objects.

WAHtmlTreeDocument is an alternative canvas to
WAHtmlStreamDocument but the latter is used for performance (and may
not work as a replacement at the moment although it should). Most
browsers will display stuff as it arrives so streaming gives the user a
significantly different, faster feel.

The metaphor is:

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 91
main(){ WARenderLoopMain
root = new root component
while(1){ WARenderLoop

render(root); WARenderContinuation
process_callbacks(root);
redirect(); WARedirectContinuation

}}

The redirect is to a new page that shows HTML so if you refresh you are
not resubmitting.

Julian listed some areas where they thought people would plugin but which
have not been so used. Configuration was one. Another was custom error
handling, e.g. to send an email to yourself or to save an image snapshot to
explore the error later. A request Handler could implement REST API
using the Canvas but ignoring other Seaside stuff. A session expiry handler
could be done. Toolbar and Halo are also pluggable.

Configuration (in 2.9; 2.8 is different): subclass WASystemConfiguration,
implement describeOn:. Optionally implement parents to inherit from
other configurations. Then go to the config screen, add your config. Ensure
your names are globally unique.
describeOn: config
(config string: #myappSoapHost)
label: 'SOAP Host';
comment: 'My App SOAP server hostname'.

(config list: #myappTheme)
label: 'Theme';
options: [self allThemes].

config at: #sessionClass put: MySession.

Similarly, to create your own Error handler, subclass WAErrorHandler,
implement handleError:, optionally also handleWarning: and
internalError:. Then select this error handler in your config.
handleError: anError
session := WACurrentRequestContext session.
self
sendEmailForSession: session
error: anError.

self forkAndSaveForDebugging.

A RequestHandler subclasses WAEntryPoint. It needs to override
handleRequest:. (Optionally, implement your own configuration and
add it as a parent in defaultConfiguration.) Add an instance of the
subclass to a dispatcher.

Session expiry handler is similar: subclass WAExpiredSessionKeyHandler
and override handleRequest: (to return a response).

Q(Annick) Any XForms implementation? Not that I know of.

Q. Scripts and CSS? SeaBreeze does that. In Seaside 0.9 parsing the
templates needed modelling the entire HTML 0.4 spec which was brutal.
Those syntaxes are large. (Niall: Michael did it in WithStyle.)

92 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
Q(Stephane) sometimes successful technologies become less successful as
technology changes around it; any such things upcoming? Not that he sees,
but the biggest risk is non-adoption. We must grow Seaside while people
are watching.

Q(John O’Keefe). How do you decide when 2.9 is done? It will be done
soon. Lukas and Philippe worked on 2.9 all the way through, he has just
been in the last few months, so they will decide. They just have some bugs
to fix.

Q(Annick) Browser-specific canvasses? They have avoided that and hope
they can continue. Of course if you modelled CSS then you would have to.

Glass: share everything, Dale Heinrichs, GemStone
Dale has been working on Seaside in GemStone for 2 years. GLASS uses
Monticello for source code control and OmniBrowser for development
tools. It is easy to move.

“The Applicance” is VMWare configuration running an instance of
GLASS with 3 seaside VMs, 1 Maintenance VM, and etc.

‘Share nothing’ could be characterised as ‘Hit the database every time you
need anything.’ This is well suited to when the web server is stateless and
the model is simple. Scaling is limited only by how much electricity you
have (and h/w and ...)

Smalltalk is share everything: everything is in the image. GemStone/S
handles very large images on multiple VMs; it lets you share everything
with share-nothing scalability.

GLASS started with a single VM serving all sessions. After two months
they dropped that in favour of shared session state: let any VM server any
session. Finally they made _k and _s optional.

They abort start on session, commit if you changed during session. They
use apache to round-robin requests to a number of VMs, with persistent
session state meaning do not have to synch VM to session.

However every request changed persistent session state. 10 - 100 commit
per session (10 million requests per day) will drives you to sophisticated
hardware rather than commodity hardware. So he aimed to avoid saving
‘unnecessary’ session state. Seaside creates a continuation for every page
(WARender, WARedirect, c.f. Julian’s talk) but you may not need them to
persist. By not doing so, he did an experiment and reach 7k sessions per
second on a commodity hardware config (7 machines, 72 CPUs, 128 VMs)
whereas if he saved every request he dropped back to 200 seconds.

The third option is session affinity. You could then use temporary memory.
Two years ago, Dale thought, ‘One VM per session? No way’, but now he
thinks, ‘we could’. This is a two week old idea they have explored to ensure
it has no killing drawbacks. It will be a strategy, chosen for its trade-offs.

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 93
Q(Eliot) Hydra? Gemstone is exactly like hydra. Hydra will minimise the
memory footprint of multiple Squeak images. Gemstone does similar
things, uses nmap and so on.

So you have 150 VMs running on 7 machines; how to debug? They
autocommit: a saved method gets saved to all the VMs immediately to
simulate the experience of working in a single VM environment. You
would never want to look at 150 logs or 150 Transcripts for where your
show: appeared so the object log acts as the transcript. Breakpoints
likewise are distributed to all 150 VMs so any one of them can be the one
getting the bug. Click on profiling: the VM that gets the request is the one
that profiles.

He opened the ObjectLog in the web browser. The startup lists the VMs
and the pid they start on. Entries have priorities so you can sort on these
fields. The oop is shown (useful for saving your having to do == and --
checks). You click on objects to see more details.

He opened the counter app. and also opened the Squeak image that was
connected to GemStone. Transcript show: ‘Hello World’ was executed in a
VM in the appliance. The object log shows that ‘Hello World’. The
Transcript showed an array and so it was in the object log.

Q. The GemStone VM serving the Squeak image is running where? On the
appliance.

He then opened a Seaside walkback. It has a remote debug link. Clicking
on it creates a resumable continuation (showed it to us in the object log).
He continued the continuation then went back to the walkback in the web
browser and clicked the resume button. If he’d clicked it before it would
just have told him he had not continued the continuation and so come back
around but now it completes the web request. He looked in the object log
and saw the same continuation, still there but now no longer saying it is a
resumable continuation,.

So, in summary, when you reach the error handler it snaps off the
continuation and saves it. A resume sticks the persisted process back in the
continuation and resumes.

He toggled profile and in his web browser could see ‘profiling’ and the pid
of the VM that got the profile request. He tried to bring up the profile and
got ‘11 is too many retries’ so this demo hiccough became a demo of
debug. He had FastCGI errors; he’d had a timing error in the profiler that
made it pick up a reference to a semaphore, which could not be persisted.
The ‘11 is too many retries’ is because they try 10 times.

He almost forgot (Christian reminded him) when he’d finished explaining
this to bring up the profiler (by just doing back-button and retry, and it
appeared). The profile tabulates the receiver class, the implementor and the
data. You can step back from line to line in the call stack path. Clicking on
the implementor shows it source code.

94 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
Q Licence? Size of DB 4Gb and a single server. That is free. The next step
up is $7000 but they are looking at other models. They may break the steps
into the two axes of number of hits and size of data: do you need more
CPU, more shared memory or more disk? They may make more disk space
cheaper than more CPUs.

Q. Tuning? Seaside is a known application which means they can work in
the lab on what to tune and how to tune. A greenfields application would
be harder because GemStone would not have that experience of the app, so
they can supply an appliance with good tuning choices and good advice on
what to look at.

Maglev and Gemstone 3.0 are the same product.

Seaside, Lukas Renggli
The seaside-dev list is for developers not users, people who contribute
code. (So why are there 80 members? Perhaps just people interested to see
what is coming.) They were using the Mantis bugtracker but they did not
get enough bugs so switched to the Google bug tracker. 250 people per day
are visiting seaside.st. 800 people are on the seaside list. Go there if you
want to ask questions.

They had 10,000 downloads of the one click-image last year! It got a lot of
attention from blogs and outside the Smalltalk community and was one
peak on the graph. The other was their April 1st joke that got mentioned
widely. (They pretended they wanted to port Seaside to Java.)

They are running on Squeak and Pharo (which Lukas uses for
development). Seaside is also on VW, GemStone and on Dolphin (up-to-
date there) and on VASmalltalk soon (see John’s talk tomorrow morning).
Lukas wants to thank Dale (Dale: “you guys make it real easy”) and others.

Syntax for portability: do not use underscore. Do not use {1 2} brace
arrays. GemStone also has array constructors and they don’t use them
either. Do not use ByteArrays [1 2 3]. Do not use variable bindings like
Core.Object. Do not use GemStone selection blocks {:i | i.is.permanent}.
Avoid ifNotNil: and ifNotNilDo: which are incompatible with other
Smalltalks. Other syntax can be used. Pragmas, e.g. <javascript: 1.5> are
OK (see seaside.st).

Do not compare collections, Collection>>= differs between dialects. Use
keysAndValuesDo: not withIndexDo: Do not use pairsDo: since it
is not dialect consistent. 1 to: aCollection size by: 2 do: works
everywhere.

Strings: Symbol is not a String in all dialects. String>>match: is totally
broken in Squeak for UTF-1 and is not consistent generally. Converting via
asString has the problem that VW breaks if you implement asString
on object. displayString is also used so they now propose to use
toString. (Bruce: Kapital uses toString already; Reinout: it is in a
couple of libraries; suggest to use asSeasideString). They also avoid

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 95
IO since platforms are very different for file handling and so on.

Rather than make everyone remember that, they added new rules to Lint to
target Seaside problems. Slime (Smalltalk Lint ...). These also address e.g.
html div with: ‘Hello World; id: ‘message’

with: is not the last to be sent; it should be.
html updater
id: ‘message’;
callback: [:r | html byte:]

The callback should use r in the block, not html (the parameter is there for
a reason; use it).
renderContentOn: html
a := self call: WACounter new.

Do not call when rendering: we have tasks for that. Do not change
component state when rendering or create components while rendering:
refresh will invoke it.

Slime also looks at style issues: calling div with: instead of div:, or
div: [html text: ...] .

He showed the tests bar for 2.8 and earlier, then asked where are 2.9 tests:
“Not enough space on this slide to fit them in.”. They had 131 in 2.8 and
are nearly at 400 already in 2.9.

In Squeak they use Monticello for versioning. Cincom reads the Squeak
file-out into their image, similarly for other dialects. GemStone, by
contrast, implements Monticello and Lukas strongly recommends that
vendors implement Monticello2. It is the future of Smalltalk interchange.
Dale agreed: whenever he saved to the repository, Lukas and Philippe
would respond to his work without his having to push. The effort to port
was one month to get Monticello working and one month making zip-file
work. Lukas stressed Monticello 2 will be much easier.

They do not use Sport. They have a SeasidePlatformSupport package.

Q(Bruce) why? Discussion of some things they needed which were not in
Sport which can then be moved to the standard. The aim of Sport is to kill
Sport and get things move to the standard.

Only the core code should contain WA-prefixed classes so please others do
not reuse this in your applications and in Vendor specific code.

They would like people to use Google bug tracker but if not please use a
public bug tracker. Please use Monticello 2 to reconcile your changes to the
main branch so they can see them.

They want to support multi-CPU. Squeak hydra project will be supporting
this.

96 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
They want a better GUI.

The Seaside sprint followed the conference starting Friday afternoon and
running on through Saturday to Sunday morning. The location was initially
a cafe near the rail station but then moved to the new Amsterdam library
which proved to be ideal.

Download the iPhone Pier from source.lukas-renggli.ch/isea (iSqueak
came 3rd in the ESUG Smalltalk Awards).

He opened his iPhone simulator. It will run on any WebKit browser. Lukas
browsed some methods and edited one.

Q.(Torsten) Documentation? Class comments are much improved.

Modelling Tools and Methods
MBA Smalltalk: to manage your objects, Mathieu van Echtelt,
CosmoCows
In 2001, they started work in Squeak with pre-dot-com-crash plans that
they found they had to revise. In 2002, they did consultancy work in
Smalltalk for a US company, so remained solvent. In 2003-4, they started
a product ‘the ultimate contract and invoice management system’. They
presented this in Brussels.

In summer 2004, they got a customer in a rather unusual way. A VAR who
was aware of their system saw news reports about the Dutch fire brigade
needing to manage their authorisation of whether businesses, e.g. pubs,
were fire-regulation-compliant. Such regulation compliance has
similarities to a contract between the pub and the fire brigade. They
therefore visited to present their ideas - and discovered that the fire brigade
had a much more urgent issue: they needed to manage training their people
to ensure that e.g. first aid refresher course requirements were met and so
on. Their product was a framework that could be transformed into solutions
to this. From it, they built two business administration systems: ‘Ready’
and ‘Status’. The created another company AGS to sell these. The more
conservative name was better, as was the all-Dutch company website.

Ready is used by the fire brigade and heath care institutions to train and
assign rewards for training. It is a web app. He logged in and showed some
screens. ‘Status’ managed scrum-like sprints. He logged in, created a
ticket, assigned the reporter and so on.

Mathieu created the name ‘MBA Smalltalk’ for this conference to explain
the framework. A typical ‘software street’ has people responsible for Java
client, for system code, for database and so on such that adding a date field
can take a week. Their aim is to free the modellers who use MBA smalltalk
from having to think about persistency, GC, etc.

In MBA Smalltalk, an editor lets users manipulate model description
language, from which a generator creates Smalltalk code. (At first, they
had an interpreter that ran model description language directly. However

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 97
the interpreter was too slow and they were successful in getting contracts
to create models rather than selling the tool to managers to create their own
models directly.) A renderer creates the web output from this, with styles,.
Automatic tools aid configuration and line-ups, and make deployment a
one-click process.

ESUG 2005 showed the first version of the system. The second version still
had a web-based development UI. The third version, inspired by Squeak
Morphic, let you go directly to code from web widgets. In the latest version
they provided a Smalltalk UI for development and used Store as their
repository. A fifth version is in development. The web output retains the
morphic ability in development mode: widgets have task bars with ‘inspect
subject’, ‘pick slot’, etc.

Their modified refactoring browser has a SchemaSource tool: left pane
shows instance variables, right pane shows source. They use many
pragmas.

He logged in on the web. In Smalltalk, he browsed a demo class
EsugMenuBox. He created a contract allocating modules that included the
ESUG module. He started with three empty schemas for person,
organisation and report.

In Smalltalk he created a name method for Person with type and dataType
pragmas, resynchronised and showed the string field on the web page. He
then added more <propertyAt:put:> pragmas for #label, #isMandatory,
#isVisible. Making it mandatory displays a red dot icon by the field.

Q(Stephane) Resynch? Generates Smalltalk code from pragmas.

Q(Stephane) Validation? Simple validation is done via pragmas. Complex
ones (e.g. Dutch ‘flex’ contracts) are done in Smalltalk code.

Q(Christian) You mix presentation and data model elements? Yes. One
typical working style is to set up screens and agree with customers, then
evolve data model behind it. They find they can live without a model-view
separation. What would that buy them except a doubling of the number of
business concept objects from 600 (their current state) to 1200.

Properties can be assigned styles and these styles can be filtered.

(At this point he had the usual demo hiccough; he had stripped an existing
system for demo purposes and needed something he had removed. He fixed
in the debugger.)

He showed various slot types (checkboxes and so on) and the connection
to low level process decisions. Collections are handled: a slot can be shown
once or many times. He then showed code generation by putting a break in
the debugger. Resynching calls addMethodPlansTo: aClassPlan which
calls addMethodPlanTo: and so on. A hierarchy of builders handles
generation of getters and setters, choices, collections, etc.

98 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
Q(Stephane) should we have a slot object, not just data? (There is a VW
package that does slots.)

Fame: MetaModelling at Runtime, Adrian Kuhn, Univ of Berne
You can download the metamodelling framework FAME from
smallwiki.unibe.ch/fame. Fame grew out of Moose. His talk example was
to model an eternal beer store, i.e. one that need never be shut down to
update it. Fame lets you update your metamodel at runtime. As your
business changes, your metamodel must change. Today, the store sells beer.
As it grows, it may start to sell speakers or cars or ... But at start, it sells
beer. We model beers as objects, instances of a class Beer with slots name,
alcoholic volume, price and size slots. This in turn is an instance of Fame-
Class with slot properties. (He will call such metaclasses Fame-Class to
distinguish them from Smalltalk host classes.) Fame-Classes are
metaclasses, instances of metametaclasses. Our business is modelled by a
model which conforms to the Fame metamodel which conforms to the
Fame metametamodel. The metametamodel is hardwired into the host
Smalltalk system and the same for all metamodels and models.

He showed their file format, which is a Smalltalk literal with the initial #
character removed. (They started by using the Smalltalk parser and now
use a dedicated parser so noone can inject executable code.)

Q. The alcohol content of the beer value increased in the last slide; is that
a metamodel feature? No, it is because Adrian was drinking beer while
doing the slides. :-)

Fame classes have corresponding Smalltalk classes. Pragma processing
sets up the Fame classes from the Smalltalk classes. Refactoring modifies
host classes when Fame class changes requires it. In the metamodel, a
hardwired bootstrapping generates the Fame metamodel as instances of
host Smalltalk classes.

Time to demo. He opened a Squeak image with the latest Fame version
loaded.
t := FMTower new.

Exploring the tower opens a browser, with tree of model elements. Now we
have a tower with only the topmost layer populated. He created a new
tower to import the Beer model (Squeak-implementation is partially
ported; in VW, you would reuse the tower you just created but a few
Squeak things are to port; on the train coming here he was finishing this,
fixing bugs, etc.; it is just done).
tower := FMTower new.
tower metamodel importString:

He browsed (and noticed another bug to fix: the annotation string
replacement had mistaken pragma brackets for replacements; it works for
all the other generated methods). He opened a Squeak browser on the HNK
(HeiNeKen beer model) package.

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 99
Q. Methods have type pragmas. What happens when I add a string to a slot
with type Number? Nothing at first since they do not generate any
validation checks on setters. If you then verified the model, the wrong
instance would report a mismatch with its Fame model.

FMManySlot handles two-way update of slot and back-reference-slot, thus
modelling associations. He browsed the model data, adjusting alcoholic
volume and price to please the audience.

Q. Change Smalltalk code: automatic update? Not in Squeak. Adrian has a
VW version that does this.

Q. Map existing Smalltalk classes into Fame how? Set a pragma on the
class side and on accessors that you wish to become slots. It can be easier
to generate a skeleton, and read it in again.

Q. EMOF? They implemented it in Moose 3 years ago but found they never
use it. EMOF has a metametamodel of ~ 30 classes instead of Fame’s 4.

Fame can generate UIs, including for metamodels it did not know about at
starting, since all ultimately works from the metametamodel.

Q.Extend at runtime; what happens to existing data? They do not handle
migration of instances yet, You just get new slots being nil and so on. He
has not yet had a client of Fame that requires more.

Using the Meta-Environment for Model-Driven Engineering, Tijs van
der Storm
Tim works at CWI and also teaches at the University of Amsterdam. His
meta-environment is a programming environment for languages, just as
Squeak is a programming environment for Smalltalk. Algebraic
Specification Formalism and Syntax Definition Formalism are two parts.

He explained his environment by making analogies with Smalltalk. In
Smalltalk, everything is an object. In His ASF +SDF Meta-Environment
(the MetaEnvironment) everything is a term, their name for an item of
parsed source code. Terms are parse trees: Abstract Syntax Trees plus
layout (i.e. comments, whitespace, etc.). He showed the (large :-) parse tree
of
foo
^self

SDF is similar to EBNF (but its productions are reversed - historical
reasons for this). It does GLR parsing of arbitrary context-free grammars.
It offers disambiguation constructs since ‘arbitrary context-free grammars’
includes ambiguous grammars.

All Smalltalk computation occurs through messages. In the
MetaEnvironment, all computation is transformation of parse trees by
applying rewrite rules. The rules match ASF expressions and construct
transformations of them. This is purely functional computing.

100 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
The language is the environment in Smalltalk. In the MetaEnvironment,
languages are environment contracts. The environment knows about some
specific languages such as one for errors, one for formatting, one for
formatting. To add another, you must define it in SDF and define a GUI
plugin that consumes it.

As Adrian explained in his talk, systems conform to models which conform
to a metametamodel which also conforms to it(self).

He demoed a trivial language for markup called ‘Waebric’, writing
expressions such as
module Hello

def main
layout(“Hello”){
h1 “Hello World!”;
p “Home”;

}
end

def layout(title){
head title title;
body yield;

}
end

and others for recursive menus and so on. He opened the tool set and
browsed the graph of modules used to construct Waebric. An error pane
lists issues with the grammar. He showed the parse tree of the code above,
which was large and grew larger when he added a comment /* bla */ to the
text. He ran and showed the HTML produced. The errors showed a non-
XHTML 1.0 tag and the tool took him to its cause in the tree(main layout).

He showed the error syntax grammar. There is also a Java grammar, done
by another group who use the SDF part of the tool.

Q(Reinout) Changes in last three years (when he used it and found it hard
to use)? It is now more stable

Q(Niall) Comparison to OMeta: OMeta only parses a restricted class of
grammars, thus avoiding ambiguity but forcing what Tijs feels is an
awkward way of describing the grammar. This restriction also blocks
applying OMeta to legacy cases that do not fit it. OMeta allows parsing
actions in a dynamic language: the MetaEnvironment, as noted, restricts
strictly to rewriting. The two are therefore aimed at their different domains.

Modelling and Mapping Tools, ObjectStudio, Dirk Verleysen, Cincom
(I missed Dirk’s talk at ESUG; the following is an extract from a demo he
gave me four months earlier.)

The ObjectStudio modelling tool has 3 explorers: design, use case and
CRC.

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 101
Use Case: (re)name model then create Actors for your new model. An
Actor can do use cases, e.g. an Administrator can enter new employees. A
use case is just text saying what it does; it has no formalism greater than
formatting this text. You can select items in the text and identify them to
the tool as domain objects in the application. Other text could be made into
a use case association e.g. ‘check zip code’ is another use case referenced
in this one.

CRC explorer. You give objects responsibilities and collaborators,
identifying more domain objects in the process. For example, a Company
collaborates with Person in adding new employees.

Design Tool: this is the principle part of the tool. Domain objects appear as
boxes and are defined: attributes / instance variables (an attribute can have
various settings) and relationships: inheritance, aggregation and
association. Detailed tabs let you specify an association’s overall data and
its LeftDetail and RightDetail (cardinality, traceability - can my far end
walk back to me or not, etc.). A description tab lets you document the
relationship’s purpose.

Synchronise creates classes mapping these descriptions. If you are using
the tool in OS7, you generate .cls files. From a list you select which kinds
of methods are generated (accessors, initializers, releasers, events, drag-
drop methods - called template*). The design browser then shows these
classes (and methods but here there was the usual demo hiccough or it
might be the tool needs resynch of model after generation, but that seems
inappropriate). The design tool’s diagram properties can be set to e.g. not
show methods, and it can switch between various OO diagram notations.
You can also edit the objects to highlight certain things, etc. Printing to .rtf
gives you a basis for documentation.

Q.Georg (discussions) Old code, pre-exception-handling in OS, leads to
code like ... onError: [^error].

Changes to a method, whether made in debugger or class browser, now get
reflected back in the model immediately you save the method. This works
in some OS7 configs and is ported to OS8 along with the rest of this tool.

Dirk then built a UI for the model he had constructed. This was a
straightforward putting of boxes on canvases and connecting to model
elements.

Q(Georg) when Dirk was an OS consultant, what was the tool used for?
They did the entire system for a customer in the tool and always kept it in
memory so they could always print out the current state. These diagrams
were used in discussion of what work was to be done. Eduard found it
useful at project starting and after a six-month break in development.

ADvance shows two lines for binary relationship which makes large
diagrams much harder to read. It is a much smaller thing than the OS tool
with no synchronisation. Its sole virtue is that it is very lightweight and

102 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
unobtrusive; you can have a few diagrams if you want them and ignore it
otherwise. ADvance is an aid to documentation and to brief design
activities within an XP approach. A project that wants a full modelling
solution will use the ObjectStudio tool, not ADvance.

Q(Georg) Porting to OS8; what was that like? The hard part was mainly
testing. It is all UI so you have to create and assess them. Dirk also
uncovered some bugs that were in 7 as well as 8.

Meta-Modelling Panel, Lukas Renggli, Mathieu van Echtelt, Adrian
Kuhn, Tijs van der Storm
Reinout asked the panellists to summarise their systems in terms of round
trip engineering. (One context for this question is fitting projects to legacy
engineering.) Tijs has effectively no support for it and doubts the value of
modifying generated code. Lenses are a way to formalise reversible
transformations but they are harder to use and restrictive. Mathieu’s system
lets you change code and they do but the description will not change.
Magritte is just objects in the image. (Niall: but you could map the ToDo
field of the last talk back into an instvar and serialize its Magritte objects
into Smalltalk code. Glorp ActiveRecord uses a similar approach to read
database schema into mapping objects and then serialise them into code.)

I asked about collection classes (see my ESUG 2005 Design Discussions
talk). Mathieu reimplements (some of) them, which is the standard but
imperfect solution for this problem. FAME assume all collections are
OrderedSets, so has a single subclass, the convenient solution (the clients
have not complained yet): slots are a subclass of OrderedCollection that
override add: and remove:. Magritte has a OneToMany description and
uses the standard collection classes. Lukas has noted that complex relations
are hard to handle, prompting much handcoding. This may be related to not
having meta-enabled collection classes.

Christian played devil’s advocate: it’s better to write specific Smalltalk
code; defend your use of meta systems. Mathieu would be two years of
effort behind if he had had to write HTML and SQL instead of generating
all that stuff. Yes his users must forgo hand-crafted interfaces but they are
accepting this, perhaps because Mathieu’s competitors are even worse or
because they get something that works in a time they like at a cost they can
pay. Very rapid changes are also possible because they change in one place
and then the web UI and the database conform. Ten handcrafted pages are
OK, 100 are not, 500 are so very much not. Magritte is not closed:
handcraft all the Seaside pages you want and use Magritte for the rest.

Is Smalltalk special when it comes to implementing self-described system?
Adrian has ported FAME to Python and Java. In Java, it cannot connect to
classes, OK if you are a pure meta-model app, a problem if you want to mix
meta and ordinary code. Magritte uses class extensions so would be hard
to port to a language without them.

Show us your projects: ten-minutes presentations
A late afternoon session on Tuesday allowed a range of projects to make

CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008 103
10 minute presentations. Those not included in other sections are here.

Pharo: help people to invent their future, Stephane Ducasse
See www.pharo-project.org. They will rework the Squeak build to provide
a clean and lean open-source Smalltalk, removing junk, sorting out
dependencies, eliminating uninitializable old code and so on.

Simple Web Apps with HttpView2, Giovanni Corregida
This web app framework was built by Goran Krampe for the SqueakMap
server in 2003. Noone else is using it.
HVHelloWorld>>default
^’HelloWorld’

and there you have a website. A small website is quicker to build in HV2
than in Seaside. It uses old-style Seaside-like methods h1:, etc. (now
Seaside has moved to Canvas, Giovanni will move HV2 to canvas too).

It is HTTP-compliant: get, post, put, delete. Giovanni wants to evolve it to
a RESTful web-services application (no point competing with Seaside).

See squeaksource.com/HttpView2.

Kerala, Alexandre Bergel
He wants to check architecture conformance, coverage, etc. He showed a
rectangle-merging test and broke it down into various calls on rectangle,
making up a history of calls on the tested rectangle. Thence he looked at a
graph of unique class name references in his tests execution. He showed
these graphs for several tests. He opened a Pier image and made the
subclasses of a test known to Kerala. Then he ran tests and opened a graph
of moments in the test, picking a colour map; each moment was shown in
a column whose squares were coloured. “Please don’t ask me what these
are good for; I don’t know.” :-)

Seaside XUL, Michael Davies
He opened Squeak and showed the usual appearance. They have written an
application to give a client a more standard look and feel and have open-
sourced this theme. The controls looked more Mac-like. Then he showed
some other themes. You can tab between fields, see better where the current
focus is, scroll via the mouse wheel without disturbing your focus which is
also remembered when you switch between windows.

He showed a report-building application used for their clients, with drop-
down lists, checkboxes and menus, all the familiar controls. He showed
using it to edit a labelling file, with its barcode, routing text and so on,
setting border colours and all the usual stuff. It is all done in morphic using
various subclasses of ImageMorph to support translucency.

SeaBreeze, Karsten Kusche, Georg Heeg
SeaBreeze is the UI builder for Seaside. He opened a Seaside website. He
clicked the toolbar editor link to open the left-hand-side widgets (also
written in seaBreeze so you can edit the layout of the tool in itself). Select

104 CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
a Seaside element, set its basic attributes, its CSS, its layout and its drag-
drop behaviour. You can click to open a refactoring browser on a callback
method. He showed making an element redraw without redrawing the
page, making another element toggle, and using simple one-line method
calls to get AJAX effects. It also shows a palette of elements you can add.

Q. On Squeak? Not yet, just VW.

Q. Cost? For non-commercial it will definitely be free. Commercial is
TBD.

StakePoint
Stakepoint is a general purpose planning program using Glorp and Cairo in
VW. The UI shows resources on the left, timelines on the right. Linear
equations are solved in the image and a revised plan written in a single
transaction to the database. You can drag-drop to add documents, emails,
etc., directly to the tasks.

Q. Can you import MSDocument data? He can feed a task into an
MSProject database.

Q. Why use this tool instead of MSProject? Many people can work together
on the same document, thanks to the transactional behaviour.

Q(Bruce) Capture actual data from contractors actually doing the work?
Not yet protected with capability-based login and etc., for that but yes it is
multi-user so the contractor could be given access.

Demo can be downloaded from the ESUG website.

Nikolay
A new Squeak and Seaside-based disk has been released in Russia. One
disk with Squeak, Seaside and content for a webserver is given to e.g. a
school, installed on many computers and then updated over the internet.

Other Discussions
The UK smalltalk user group has a new website uksmalltalk.org, set up by
Bruce Badger and Giovanni Corregida.

Georg announced that SeaBreeze will be available on the MIT licence.
Heeg will also sell a supported commercial licence. They will publish
SeaBreeze to the public store “as soon as the comments are written.”

Leandro announced the second Smalltalk conference in Argentina. It is free
to attend! The coffee and cakes are also free! Last year they had 200
attendees. There will be three tracks, one for education, one for interest and
one for research. Andrés Valloud will be running his mentoring course.

I talked to a GLASS user, Otto Behrens of FinWorks, who deal with
retirement wealth management / insurance. Their system supports monthly
investments into voluntary pension products, from employees whose

VASmalltalk Event, Frankfurt, September 23rd, 2008 105
employers offer the schemes to the brokers who invest the monies. All
parties get a central point in their system to save them from forever having
to reconcile their data. The system displays info regarding unit trusts:
classifications, trading currencies, fund domicile, etc. The FirstRand group
has 3 entities: MomentumLife (80Gb Gemstone64 database), RMB
International (does a similar business to FinWorks but working backward
from employees not onward to monthly payments) and Rand Merchant
Bank Treasury, whose system is similar to Kapital but is specifically for
bond valuations. They use VisualWorks on Sybase. RMB International also
run Seaside in VisualWorks for asset statements for RMB customers with
large cash positions. FinWorks came out of RMB in the sense that Otto and
others worked for RMB previously and FinWorks does work for them.

FinWorks have PDF generation from Seaside: they build the Seaside html
page, then add special tags like page break, page number, landscape or
portrait, then run a commercial tool (www.princexml.com, $3000 licence)
that produces PDF from the page. They also generate pre-populated PDF
forms this way which a user can fill in the rest of and have a customer sign.
They are converting to Magritte: a pain here and there, but generally
working and helping.

ESUG has prepared a PDF of a fold-out flyer describing Smalltalk. See it
at daniel.cassou.free.nl and/or get copies from ESUG for conferences.

The perils of being the local organiser: Adriaan had to pay when Noury
arrived with a large party of guests at a restaurant - and then discovered he
had forgotten his wallet. :-)

CosmoCows are hiring. Good designers wanted, knowing Smalltalk or
willing to learn it.

VASmalltalk Event, Frankfurt, September 23rd, 2008
Travel to Frankfurt was painless, despite my change being at the notorious
Heathrow terminal 5. My hotel room could have slept 5 with ease - except
that none of them could have slept while the overnight trains passed with
incredible noise on the tracks outside. The forum’s coffee and cakes were
on a generous scale.

Summary of Projects and Talks
Joachim introduced himself and ObjectFabrik. ObjectFabrik is preparing
Smalltalk training material and courses.

Instantiations Market Perspectives, Nicholas Gilman, Instantiations
Instantiations teamed up with Joachim two years ago and have found it a
very effective working relationship. John came to Instantiations a year and
a half ago after 40 years with IBM. (I told John he did not look old enough
to have 40 years with IBM; he told me it was six months short of that. :-)

Instantiations is committed to Smalltalk. VASmalltalk is an important part
of their business. They have sold new licences into all major country

106 VASmalltalk Event, Frankfurt, September 23rd, 2008
markets in Europe this year and they expect to be using Smalltalk for many
many years. Nick is responsible for the world outside North America but
the overwhelming majority of his time is focused on Europe.

Q.(Christian) Size of market in Europe v. North America? The market is
smaller but not significantly smaller. The US has some mega-installations
(100 - 200+ seats) whereas Europe does not have that scale, but it is still a
significant proportion. (Louis asked who they were; they are in the
insurance market. Nick might be able to provide Louis with specific details
for internal use only.)

If you want to influence the product, be the squeaky wheel (like NSF :-)).
Louis mentioned discussions in the VA forum. Niall described how easy
(for NSF) was being interviewed (by John O’Keefe) leading to an article
that was placed by Marta; if it was as easy for Instantiations as it was for
us then other users should talk to us today about it and maybe do the same.

Q. Young Smalltalk employees can be hard to find. Potsdam and Paderborn
universities teach OO in Smalltalk but they use Squeak or VW. The
questioner knew of a major real-time user of Smalltalk who went away
from it because their Smalltalk team was aging and not renewing itself.

VASmalltalk and today’s trends in IT, Joachim Tuchel, ObjectFabrik
IT today is complex, the more so because of the history a typical IT
department will have. Old systems and databases have complex
interactions. The idea of having only one database, only one OS and so on
is often raised. In response to this idea, some IT shops have eliminated
Smalltalk but elsewhere Smalltalk has survived, often because replacement
projects have failed (after spending much money) for various reasons,
some of them technical. Such experience teaches (some!) managers that
business value is more important than having the ‘right’ (fashionable)
technology.

After being neglected for several years, Smalltalk shops now find
themselves with a lower budget than five years ago but told to continue
providing, and usually also improving, business value. Integrating with
other technologies is also a frequent requirement.

Presentation is another area of current interest. Today, there is a mix of
sometimes going onto the web (“lets concentrate everything in the
browser”) and sometimes going back from it to rich clients again. IT shops
want to avoid installing things on the client. Companies want a strong
company-branded presence through a single portal. Global availability and
platform neutrality are wanted.

Why do others not want to go to the web? The web limits interactions, can
make complex tasks too challenging, raises the problem of how / where to
save local data, etc. Rich clients give you platform-drag&drop, faster
feedback and a generally snappier feel to the app.

Of course, a rich internet application is a possible best-of-both-worlds. You

VASmalltalk Event, Frankfurt, September 23rd, 2008 107
can have active elements (e.g. sliders, drag&drop) without page reload.
They combine client technologies (AJAX, Javascript, ActionScript,
Adobe) and server technologies (Smalltalk, Java, Ruby). AJAX is an XML
HTTP request that uses Java script to update the DOM of a page on the fly.

VASmalltalk offers various web interfaces. VAWebConnection is a legacy
product (it was sort of a prototype for Java Server Faces). Server Smalltalk
is a stronger and newer product. It is stable (ten years of use), scalable
(multi-threaded, multiple images) and combines an HTTP/S server with
Java-servlet-compliance on the client. VASmalltalk gives XML support,
SAX and DOM-Parser and Smalltalk-XML mapping.

Q. Native multi-threading on Linux? Not supported on any platform for
Smalltalk threads. Calls out from the VM, e.g. to a database, are OS-
threaded but not in-image processing. A single image running multi-
threading will significantly increase the complexity, so you are trading
memory against complexity.

Q.(Christian) Air, XOOL, Silverlight? Seaside has projects to offer but
nothing else is in the works. It is all XML so one can do it at that level.

Rich client platforms: Eclipse has a huge set of tools to let you drive SWT
and suchlike GUI frameworks to build rich clients. VASmalltalk has been
used to build rich clients for 10+ years. There are many parts and powerful
builders (composition editor, WindowBuilder Pro). The result is a native
application. However the default look and feel is now a bit old and OS2ish.
We need new parts: pluggable toolbars (with tear-off), ribbons, etc. These
abilities are there but are not as usable.

Smalltalk web start is Joachim’s preferred ‘most needed’. By ‘web start’,
he means we should be able to have an image check on start-up for updates
from a server and get the new image or the new code to load. Joachim
would also like to see Windows CE/mobile and Mac OSX added to the
platforms’ list, but that is not an announcement!

Web services use HTTP POST for transport and XML messages for
content in SOAP envelopes. Web services can easily become very
complex. VASmalltalk’s web services were provided in VA5.5 and have
been improved in every version. You expose a Smalltalk object as a
service.

RESTful web services are not the same as Web Services! REpresentational
State Transfer is about creating a resource, not an operation, on a remote
server. The URL is its unique name. It is (supposed to be - not every
implementation actually is) totally stateless on the server side; cookies and
all are managed by the client. A resource can be like a business object, e.g.
a customer, a message, a flight booking, and, in more esoteric senses, a
database transaction or a dataset. The mapping between your business
objects and your resources may be direct or may group them into single
XML messages (e.g. the customer and their address) or be more complex
still. The basic create, read, update and delete operations are all

108 VASmalltalk Event, Frankfurt, September 23rd, 2008
implemented by server smalltalk (it implements the whole standard). These
operations have a usefully detailed set of result codes.

Why do we care? Web Services are quite complicated and RESTful web
services are quite simple. RESTful also has some useful advanced features:
if-modified-since, last-modified. Cache control is supported: have read-
only objects or manage infrequently-changing objects. You can use a
cursor-like accept-range: get the first 100 objects, then get the next 100,
etc.

Usage is growing. The storage mechanism of Lotus notes has put a
RESTful web service in front of it.

Joachim showed the code for his PRESTON client:
getResourceNamed: aURI {queryParameters: aDictionary}
postResource: anObject toResourceNamed: aURI
...

PRESTON provides proxies for hyperlinks and other useful features. He
demoed, opening a browser on the Yahoo traffic service (alas, Frankfurt is
not one of the supported cities) to explain it and then calling it from code.
He used the normal xmlMappingSpec: shipped with VASmalltalk to map
between his business object and the XML in the queryParameters. He
brought up a simple UI on it showing the traffic situation in New York and
Jacksonville (quite light at 05:50 their time). He set a breakpoint and
showed the request going out with its query parameters, and the mapping
spec. (A VASmalltalk goodie converts .xsd to a mapping spec. Joachim
downloaded the .xsd from Yahoo - it’s part of the overall message - copied
and pasted it into the goodie and got his mapping spec.). He then used the
Firefox plugin to show the structure of the message: a collection of results
each of which is a traffic message (‘Holland tunnel is blocked due to
construction work’ and suchlike).

Q. Why would a transaction be a resource? Suppose the customer is
thinking of buying a flight? They may go on to buy, or search for another
time, or stop and abandon the purchase. This is a business case transaction.
It is worth knowing how to handle such things as resources.

He walked on through the browser and (made the screen bigger and :-))
opened the response object, looking at its header (an
SstHttpResponseHeader). The status code of the response which came
back is checked, so if it is not 200 OK it will throw an exception; thus you
can have rich client behaviour around this. He walked the object in the
‘dom’ instVar, which was just an XML DOM as in any other language.

Thus all this is simple in VASmalltalk. The basic VASmalltalk is very
robust and simple. PRESTON provides an API that looks like a standard
RESTful API.

Q. (Louis) the XML mapping generation goodie will be in the next version
of the product? (John O’Keefe) yes, and we will be doing more with this.
(Joachim) downloadable (in two versions) from Instantiations’ web site.

VASmalltalk Event, Frankfurt, September 23rd, 2008 109
Joachim asked who uses Web Services. Three groups raised their hands for
doing it in VASmalltalk and Christian was also doing Web Services in
another dialect.

SST offers you a session manager which Joachim thinks useful even if
RESTful purists think it should not be needed in a RESTful world. Using
this and the other SST building blocks (e.g. naming service) Joachim built
the PRESTON client. He then demoed another example of using it, called
Todomatic, (a ToDo list manager). Serving a resource is serving an XML
file and that is what a servlet does so the API is very similar; he inspected
the PrestonServer and showed that its applicationContext object was
just the same as for a servlet. He showed posting a Smalltalk object (a new
user) to a resource (the list of users).
postResource: aUser toResourceNamed: usersURI

A put request updates a specific existing object. A post request adds a new
resource to a list of resources and to access it later you must know its name,
which will be returned by the response.

He then stopped the server and restarted it to show making the user list only
support posting to it, as an example of controlling what operations were
permitted. He showed how he built up the structure of resource managers.
The system has a database connection where the todo data is stored and a
session manager (useful if not strictly necessary). After he made the
change, clients could no longer get the list of users though the server could
still see them.

Q. A viable alternative to RMI? Yes. He mentioned a product (a database)
that only offers a RESTful interface. You could use this to make it easier to
interface with e.g. a Java app without needing an RMI library, avoiding
RMI version issues.

Q(Niall) Can we browse this code to give us examples. Joachim is thinking
about it; yes, he would like to make some of the code available.

Q(Christian) Collections? At ESUG in 2002, Alison Dixon gave a talk that
noted the rules then needed (e.g. using Arrays not OrderedCollections). An
issue is that a result needs a rootTag and if you just return a list you may
not have it. This is a general issue, not specific to Smalltalk, so most public
service providers have probably solved it, e.g. wrapping their returned list
in a resultList-tagged object.

Most of these high-faluting web technologies we hear about today are just
based on HTTP with XML and mapping these to objects on the server side
makes them much easier to use. VASmalltalk is ready to handle all of them.

Portrait of an Agency System, Martin Elässer and Steffan Müller,
Versicherungskammer Bayern
The talk was in German but the slides were in English. Their organisation,
Versicherungskammer Bayern, is a company of Sparkassen Finanzgruppe.
Their business is health insurance, life insurance and composite products

110 VASmalltalk Event, Frankfurt, September 23rd, 2008
for individuals, institutions, etc. They handle 2.8 million claims a year
(1500 per working hour). They pay out 17 million euros per day in
insurance payments. They have many sales channels: brokers, agencies,
savings banks and direct sales over the internet.

The are big in Germany and also have a branches in Hungary, the UK and
elsewhere. They started in 1811 and have a long history of growth,
mergers, etc. Currently they have just under 7000 employees. and have a
recent history of steady growth, making them the prime insurers in
Germany.

Martin then handed over to Steffan. Steffan uses Smalltalk to support all of
this. Their system must serve customers, sell products, support acquisitions
and provide a range of services to the sales and marketing departments.

The customer service function has no selling purpose. It must be a word
processor, a scheduler and many many other things. The sales process
needs these functions too and to manage the claims history etc. When the
grow by acquiring the products of the new partner must be data-filled into
the system and/or their existing systems liaised to by the system. Last but
not least, sales and marketing need a help system to explain the data they
are seeing, etc., etc.

The system was begun with some 50 employees of VkB, IBM, Inverso and
external companies. It started in 1997 and went live in 1999 using VAST
4.0 and DB2, Lotus Notes as the CRM system, with C, Cobol and Java for
some calculation modules. By 2008 they were on VASmalltalk 7.5 and had
moved the calculation engine to an offline Java application to which they
communicated via web services. Another Java app provided a web front-
end. There were 4000 clients and over 1000 local servers.

The flow of data is complex (see slide). Customer and contract data is held
in distinct back-office systems. Insurance contracts are automatically
generated, logged in the DB and sent. He launched the Smalltalk
application and walked round its various functions.

He also showed the Java app in a web browser (IE with a browser plugin
so it looks like a native window) and walked round a standard submission
in the browser, showing in fat client its effect on the Smalltalk side. The
Java agent uses Java Server Pages and Java Beans in a Tomcat web server.
It talks via web services to the VAST server. It has the usual behaviour:
request a contract with bad data, see some fields in red appear in your
browser, fix and carry on.

Customer relationship management is becoming more important and that
is where Smalltalk effort will be put, so the Smalltalk UI is likely to remain
and grow. The users like the powerful Smalltalk forms and Steffan
certainly hopes they will remain. As for the web client, perhaps they will
replace it with Seaside in a few years; they have hopes. :-)

VASmalltalk Event, Frankfurt, September 23rd, 2008 111
VASmalltalk 8.0 and beyond, John O’Keefe, Instantiations
(This write-up includes material from, and questions asked at, Smalltalk
Solutions 2008 and ESUG 2008.) John O’Keefe has a long history with
Smalltalk. He first saw (Digitalk) Smalltalk in 1987 and was a founding
member of the Smalltalk team at IBM. He was very glad to forge a
relationship with Instantiations when IBM retired from Smalltalk a year
and a half ago. He leads the development team at Raleigh, North Carolina.
Instantiations’ co-founders developed the first version of Smalltalk in 1984
at Tektronix. Instantiations has been born, bought, sold, born again and has
always had a major Smalltalk focus.

For the last two years, Instantiations have maintained and sold
VASmalltalk which was formerly VisualAge Smalltalk at IBM. They
released VASmalltalk 7.5.0, 7.5.1 and 7.5.2 during that time, focused on
tool integration and improvements to the product. Now in VASmalltalk 8.0
they are adding some key things and also taking some things away. Seaside
and its friends appear. Browsers are enhanced. Web services are enhanced.
After a long time in which the inherited documentation had fallen behind
the product, they are now investing in new documentation and improving
the documentation system. They have also made some small changes.

The 8.0 work had four main requirements from customers. Customers want
Seaside. They say the browsers look tired. They want ANSI compatibility
in full, which means ANSI exceptions (all else is already there) and
internationalisation. Lastly, they want performance, which 8.0 has
improved under the covers.

Last year in Lugano, John said they were looking at Seaside. Since then,
they have ported both 2.8.2 and 2.9 but have now quiesced 2.8 in favour of
2.9 (John is grateful for the Seaside project’s refactorings that make porting
easier in 2.9.) Scriptaculous has also been ported. A Seaside porting layer
has been developed and will be used to provide functionality in three ways:
• Parts of it will move into the base. They are generally useful.
• Other parts will move into a common porting layer shared with the RB

and SUnit. They are useful whenever some Smalltalk utility is worth
porting into VASmalltalk.

• Other parts will remain in a Seaside porting layer.
Q(Christian) Sport? John has worked on sport and talked to Bruce Badger.
It was not aiming at exactly the same purpose so was not suited to their use.

Q(Joachim) use this (the third layer especially) to port other Squeak tools?
It has only what Seaside and Scriptaculous needs, so would surely need
additions, but could certainly be used as a base for such ports and John is
thinking about doing so.

Continuations were (and are) the thorn in their side. One-shot
continuations (i.e. simple Seaside call-answer protocol) are working today
and beta code will be released as soon as these are robust. They also have
the web inspector and debugger working and are working on the class
browser. Full continuations need VM changes and these are under way.

112 VASmalltalk Event, Frankfurt, September 23rd, 2008
Alas, VASmalltalk’s process model is quite different to those of other
vendors’ Smalltalks and this is what has delayed full Seaside. Seaside 2.9-
jf.183 is running. Seaside-Tests-Unit 2.9-pmm.156 run 95% green.

Q(Eliot) Architecture? The architecture will not be changed. The main
need is to expose method contexts which at the moment can be read but not
written, not through read only mechanisms but actually blocked in VM.
Process copying is also blocked and must be enabled.

Toolbars and Halos and the Inspectors work. The browser is being
developed; he showed a screenshot from his test system.

Browser look and feel: John showed the old, then the new with tabs. These
tabs are native, not VA ones (and so they must accept platform
dependencies). You will be able to choose standard browsers (1980 look),
the VAAssist browsers (colour coded and features) and, based on the
VAAssist browsers, these new ones.

These tabs are on the method pane but that will be replaced by a tabular
form. You can switch between tabs without having to save the content: e.g.
change a class method definition and a method that will use the changed
definition at the same time. They want to make them dynamic (changing
tab colour to show ‘changed but not saved’, ‘content missing’, etc.) using
tab icon and colour. They want to make the method pane a sortable list,
sorting on public/private or on method name or whatever. They will also
offer a tabbed workspace; John showed it.

Seaside made John want to look at byte codes so a byte code browser will
be available in 8.0. John showed it. (He will make it not too obvious how
to turn it on lest geeks spend all their time in it. :-)

Web services are of interest to large enterprise customers (and few others?).
They have customers with 10,000-50,000 bytes of WSDL in each of many
files, containing multiple nested schemas. A new style of WSDL called doc
literal wrapped has come in during the last two years. They will support the
wrapped doc literal style in 8.0. Their insurance example will be greatly
enhanced; it was supposed to show everything you would want to do with
web services but did not and/or no longer does. They will offer
documentation to show patterns for using them: there will be examples and
a cookbook, giving step-by-step instructions. This will also explain
debugging techniques; it is easy enough to do once you know how but there
was no explanation of how. They will guide how to manage deployment
descriptors, explaining how to set their configuration parameters and
where they are stored.

The old web-presented VA documentation was ugly and the source for it
has been unavailable for several years (long story). This is partly why the
documentation has not changed since 6.0. They will completely revamp the
documentation. The documentation server will go; they will instead use
WebWorks. Search and all other features will work both locally and
through the web, not just locally as it does at present. CSS will be used for

VASmalltalk Event, Frankfurt, September 23rd, 2008 113
formatting. New PDFs will be written. John showed the appearance of a
page in the prior system and in the new WebWorks system.

Q(Christian) You can select and execute code examples in this browser?
No, you must copy and paste to a workspace. You can tell what changed?
John is keen to have a when-last-updated field at the foot of the page. It is
hard to show change bars in a document. There will be a what’s-changed
frontpiece but that will be a highlights summary, not a complete list.

ANSI exceptions are fully supported. Their old instance-based exception
system is integrated with them in 8.0. You can now use the ANSI on:do:
(class-based) or when:do: (instance-based) or a mix of both. John has
switched the SUnit preload over to use ANSI: the rewrite was a useful test.

Q(James Foster) do you have a conflict between Error class and global
Error? No, Error class has been there for years. Discussion clarified the
different thing James was thinking of. Seaside drove this; it makes
extensive use of class-based exceptions.

They will improve serialization to support the wrapped literal style which
has become popular in the .Net domain. The standards are rather vague in
some cases so they have studied how this works and should work and will
provide working examples.

Windows Themes are supported on XP (available as a patch now). There
is full support for UTF-8 locales. Most Linux platforms now use UTF-8 is
their default out-of-the-box so it was a problem even to install without it.

They will complete their support for UTF-8 locales.

OS/2 will not be supported in VASmalltalk 8. Instantiations has never
formally supported OS/2 but till now has kept it running there. However
7.5.3 will be the last such version. John guarantees 8 will not run on OS/2.

Q(Louis) 7.5.3? That is the version with Windows Theme support. It was
never actually released (they decided instead to focus on 8.0) but if you
need Windows Theme support (or OS/2), email him and you’ll get it.

A beta is planned for October 2008; John guarantees it will be the last day
in October, or maybe October 35th. Release will be announced on the
Instantiations’ website. The planned date for general availability is three
months after the beta which should be 4Q2008, but it might be December
35th. (John stressed that plans can change and do not usually change to be
earlier.)

After 8.0, they will look at Seaside, Web Services, IDE Enhancements,
Installation and other things (looks like the 8.0 list).

Seaside will be continued; if 2.9 is not code-complete when V8 ships, it
will have a a backported 2.8 but they will certainly ship a 2.9 as soon as
possible. Porting Magritte, Pier and RSS needs to be done and they may not

114 VASmalltalk Event, Frankfurt, September 23rd, 2008
have all the resources to do it themselves. (In the past, people have
remarked that Instantiations do not have a code repository. John is thinking
of a Monticello-2 bridge so he can publish changes between an internal
Envy repository and the outside world.) They will help people port Seaside
add-ons. They themselves will keep Seaside and Scriptaculous up-to-date.

Web Service tools will be improved. An XML editor, better Smalltalk
class-XML translation, etc.

Q(Vincent) will these changes apply to e.g TrailBlazer? (Question was
asked earlier but deferred to now.) VASmalltalk has a plethora of browser:
the base browsers, TrailBlazer, the Refactoring Browser, and VAAssist that
sits on top of all of this. They will integrate all useful functions to a single
browser (leaving the others there to use but putting their useful functions
in the main branch browser). Tabs will let them steal useful features from
other browsers, e.g. the version graphical relationships tool from
TrailBlazer will become a tab. The other browsers will be deprecated, or at
least quiesced: TrailBlazer will no longer be loaded automatically when
you load the server workbench.

Consolidating the IDE branches was in last year’s list but Seaside took
their time plus they feel the changes they are doing in the browser will be
a better base for the consolidation.

They ship tons of examples that people never find. They have the example
launcher to expose a few of them; all the others will be exposed in it too.

Installation needs to be improved. This failed to make it into 8.0 so will be
done in 8.x. Their installer works well on Windows, not quite so well on
Vista and needs a little manual intervention on UNIX / Linux. They have a
Smalltalk installer which is good and bad - they understand it but they have
to maintain it. They must decide whether to evolve that or to go instead to
using a commercial installer.

They will probably use Glorp as an OR mapping layer; their own
framework ObjectExtender is so disused it is now a goodie.

They support many web APIs, some very old and creaky. They have
deprecated Netscape server API and the IBM communication server API.
That only leaves IIS or CGI, and CGI is slow, often because it is not
persistent, so they will use FastCGI. TCP/IP v6 is not much demanded at
the moment but they aim to be ready when it is (US government
installations are starting to require it). Some Windows CommonControls
need to be added (DatePicker for example). Windows services should not
need a special start-up executable. (John confessed it was he who wrote it
that way; he now sees they should be written in Smalltalk.) It needs two
weeks of effort to do and will make Windows services more flexible to use
and to debug, and easier to run as an app or a service.

Q(Adriaan) How do you port from Squeak to VA? John has developed a
custom file-out package exporter. He is happy to make it available.

VASmalltalk Event, Frankfurt, September 23rd, 2008 115
Q. Louis has spent time looking at deploying multiple images on one
server. The load-balancer goodie on Instantiation’s website is not industrial
strength. Louis figured out how to do it with Apache but would have much
liked documentation; will you add? Good idea; yes, we will.

Q. Experience migrating to 8.0? None as yet since noone has but now they
have a new documentation mechanism they will update the migration
guide. John is going through all the changes and noting what might be a
problem. In fact Adriaan did some experiments porting to 8.0 and then to
Seaside. Significant extensions have occurred and a class, IdentitySet, so
where these are already added by an applications own base extensions
these must be loaded. Niall suggested advising people on Envy behaviour
when loading clashing code. Adriaan mentioned he had found it easier to
get everything loaded by loading his application first then Seaside.

Q. AbtTimestamp change? The previous change had a severe performance
impact so they rewrote it again.

Q. Seaside support needs VM tests? 95% of Seaside tests run with no VM
changes but the last little bit, which is important - continuations and utf-8
- do require VM changes.

Q. If in future there is cog, would VA run on it? Eliot and John discussed
that a few years ago. The VA VM is much larger than other dialects’ VMs.
There is a good deal of primitive function exposed that is not in other VMs.
Eliot: “It is a small part of the problem but I hope I will provide enough
function for you to consider it.”

Q. IBM Eclipse work? John is pleased it happens. It reproduces some of
the Black Knight project which never was released for various technical,
legal and political reasons. John approves supporting Smalltalk availability
in that environment. Would he personally like having a checkin/checkout
environment in Smalltalk? He does not know. However Eric and John have
agreed that Instantiations’ website will have a link to the download for it.

Q. MQ and Tivoli? MQ series support remains. We’ve had requests for
JMS support that we think we could do via MQ; that is the only MQ work
envisioned in the immediate future.

Q Java Servlet interface? Yes, that remains. (John forgot to mention it in
the list.)

John offered additional demos of Seaside during the breaks.

Seaside, Joachim Tuchel, ObjectFabrik
This talk did not aim to be a Seaside tutorial. After a short introduction to
Seaside, Joachim demonstrated various aspects of using Seaside,
especially the similarities to and differences from fat client. Moving from
fat client to Seaside is an adventure but easier than any other technology
for webifying fat clients that he knows.

116 VASmalltalk Event, Frankfurt, September 23rd, 2008
Seaside was created by Avi Bryant and is now maintained by Lukas
Renggli and Adrian Lienhardt and many others. He listed some Seaside
sites (see slide) and recommended looking at CMSBox if you only visit
one.

Seaside is different (Avi calls it the heretic framework). It is different not
for the sake of being different but for the sake of being better. There are
components, not web pages, no templates (you can have them if you want
them but they will only constrict you), etc. Seaside is pure Smalltalk. You
write Smalltalk to define your components and your control flow, and you
debug in Smalltalk (can be interesting if you debug continuations but when
Seaside is running as it should - which it usually does - you do not debug
continuations).

Components subclass WAComponent. They hold state. They render
themselves in renderContentOn:. They hold subcomponents in
children. In the Java world, you may have to rewrite a component you
reuse just to have a different name for the tag; not needed in Seaside. He
showed the WAStoreCartView>>renderContentOn: method, explaining
various items, the html canvas, the div tag (important for identifying
things to CSS styling and to AJAX and other Javascript utilities), the
with: block to define what goes in the div, the cart instance variable
(components have state), the anchor brush which provides a callback:
whose block will be executed when the user returns to the server. Thus we
do not parse HTTP requests or handle Javascript directly or anything; we
just write Smalltalk code.

Components generate valid XHTML only. CSS files style this. Ideally, the
code is written by a developer and a web designer creates your CSS (you’ll
see an example of why a web designer is needed presently; Joachim did not
have a designer for his demo. :-).

So much for ‘what is Seaside’. Joachim then compared Seaside
Components to VA Visual Parts. Parts execute their callbacks as soon as
e.g. the button is clicked. Components respond when the refresh cycle is
triggered so the callback cycle is longer. (Joachim repeated the standard
warning about not calling renderContentOn: yourself; call render:).

Joachim compared abtWhenPrimitive: #clicked perform: ...
to Seaside methods such as
html submitButton
callback: ... ;
with: ‘Refresh’

“or”
html textInput
callback: [:txt | self name: txt];
value: self name.

“or short form of the above, using helper method,”
html textInput on: #name of: self.

VASmalltalk Event, Frankfurt, September 23rd, 2008 117
Differences:
• in fat client, the typical feedback cycle is instant (type in a field, get

validation) whereas in Seaside it is only on submit (submit page, get all
fields validated)

• Seaside has no GUI builder out of the box; you generate your HTML
and style it in CSS.

Q. Generate Seaside from composition editor (it can generate raw HTML)?
Not in 8.0 or 8.1 and probably never because they find that people always
want to change generated HTML. The composition editor never generated
attractive pages and this is so for all such fat client generators because
(Christian) the web model flow is not the same as the fat client’s. (Also, a
professional page will usually be designed by someone who uses a product
like Adobe Photoshop anyway.)

Q. Can you draw widget connections a la composition editor? No you can’t
but code is faster.

In general you will not generate UIs that exactly resemble the fat client
because to do that would need a div tag for every element in the UI. It is
usually more natural to live with what HTML renderers do by default in
some areas and accept that the UI looks a little different. There are two
projects to build Seaside GUI editors. (One is SeaBreeze from Heeg which
they have open-sourced under MIT with encouragement to port to other
dialects.)

Tasks are subclasses of WATask and use go to control flow e.g. to ensure
login is requested where needed.Components and Tasks can call: and
answer:. The call: receiver component is replaced by the parameter
component; when the latter receives answer: it returns a result (the
parameter) and control to the caller. It is the calling component, not the
whole page, that is replaced by the callee. A Seaside application has a task
that calls components just as a fat client has MVC, so writing a Seaside
application is very like writing a model GUI application.

AJAX is the most popular approach to writing rich internet applications
(others are AIR, Silverlight, XOOL). AJAX lets you exchange a small
amount of information between server and client to change a small part of
a page. Script.aculo.us sits on top of Prototype and both are Javascript
libraries. Prototype handles all the browser differences. Scriptaculous
provides clever widgets and effects. Seaside wrappers them so that
developers write Smalltalk and Javascript is ‘rendered’ in Smalltalk.
html updater
id: ‘myelement’“CHECK CORRECT NO ; HERE’
callback: [:r | self renderNewStuffOn: r].

Then he demoed (“This is early beta: be prepared to see a debugger.”). He
opened a YahooTrafficComponent that rendered a table, an image and an
internal table with some scriptaculous html effect ... code to show
a drop down list appearing and disappearing below a button being clicked.

118 VASmalltalk Event, Frankfurt, September 23rd, 2008
html evaluator
id: #result;
on: #renderEvaluatorOn: of: self.

He showed the very small amount of code required and then opened and
demoed, invoking these effects, expanding drop-down lists, drag-dropping
data from one component in the page to another, etc. He could not show the
debugger in the browser (answer: has a bug at the moment), so instead
showed the debugger on the server (opening it even quicker than he
expected because he got the answer: bug the John is analysing at the
moment whereby the result loses its stream every now and then :-).

Q. Does a developer of this need to know Javascript. Not to call it. Joachim
advises understanding the Javascript flow of control. Instantiations will
support Prototype and Scriptaculous? They will support ensuring you can
call it from Smalltalk easily and will feed back any bugs found in it to its
authors (but discovering a bug is unlikely, since it is in heavy use).

What must you change when moving from a fat client to a Seaside app. A
fat client will manage persistency, presentation and business logic. In a web
app, the browser has a small presentation layer of HTML and Javascript,
and it is the server that has the presentation layer (serving the browser), the
business logic and the persistence. Fat clients use their database to
synchronise data; clients do not know about other clients, just about what
the database tells them. In the web app, the server may have several copies
of a persistent object, one per session. A web server will need connection
pooling, parallel transactions, multi-threading and isolation in the image.

The situation is similar when you access other back-end systems such as
CICS, host programs, etc. Your requests must not block the server, so if
your current system has problems with that, look at replacing your current
middleware with TCP/IP comms.

Since server round-trip validates at different times than the instant handling
of fat client events, you must rework your validation model. In some fat
clients, authentication is easy: ‘If I can login to the database, I’m authorised
for the whole system.’ The server will want a separate authentication for
itself as it uses connection pooling, so does not have a connection per user.

Server Smalltalk and Seaside can handle several hundred requests per
second on a normal PC. Joachim is confident overall performance will be
determined by the application.

Scheduling downtime for maintenance tasks (installing fixpacks, DB
migration, etc.) is more important when you move to a web app. If your
browsers talk through Apache to a number of Seaside images, you will
want sticky sessions to ensure a user gets the same image through a session.
Joachim sees no problem with these though he knows some people dislike
them; he is unclear why.

Q. Security? Server Smalltalk handles HTTP/S but it may be wiser to let
that be handled by Apache whose builders know a lot about it (Louis: or

VASmalltalk Event, Frankfurt, September 23rd, 2008 119
you could buy a hardware load balancer, which will usually have security).

To start the project, use 3 or 4 developers to build a proof of concept using
a few dialogs of your app (some easy and at least two of the most complex
ones). Let it run for two months with fixed check points at 4 and 6 weeks
and a hard ‘that ends the prototype’ in 8 weeks. Why convert at all? Well
you reuses your Smalltalk code and skills while looking like all the other
corporate apps and making your team’s strengths visible.

Q. Security in Seaside specifically? Seaside avoids many issues that other
frameworks face due to its non-RESTful URLs; an attacker cannot guess
what the next URL would be from the one they get. Your page elements
also have generated names. Thus you have security by obfuscation.

Seaside is fun: you can motivate your Smalltalk developers a lot if you give
them Seaside.

Q(Christian) Seaside lacks documentation (your presentation adds to the
documentation; thanks); will you add more? The Potsdam tutorial is good.
Lukas and Adrian plan to write a book and a good deal is being recorded
on the wiki as part of 2.9.

Closing Discussions
Why choose VASmalltalk? Test-drive it and see. (I mentioned Envy
robustness; refactoring may be harder than in some other Smalltalk CM
systems but it is a solid mature CM system.)

Q(Louis) grow support staff? Nick cannot make these decisions. They are
pursuing a business case within the company for expanding and they hope
and expect that it will be approved.

Q.(John O’Keefe and Joachim) anyone use VA Generator? noone. Anyone
still on VAST? One or two; very few.

Q(Christian) next forum? Last year people said have a forum each year or
when a new version is upcoming and now looked like the right time. They
have not decided when the next one will be but they tend to think one per
year. September is close to ESUG and autumn is the busiest time of year in
Germany so maybe May is better (provided we do not clash with StS).

Other Discussions
Die Mobiliar’s Smalltalk system is still going strong. It provides web
services to Java front-ends. With luck, they may be able to experiment with
a Seaside front-end soon.

A VA user wants to replace TopLink with Glorp.

An Irish company has web portal ERM product (mapping from web to
independent back offices): Java web skin to Smalltalk system. They want
to hire fresh Smalltalkers: see the smalltalk jobs database for contact info.

120 Conclusions
Conclusions
My tenth ESUG, my seventh Smalltalk Solutions and my second VASUG:
• Seaside just keeps growing
• Being respected by adherents of now-fashionable Ruby makes a

pleasant change from being rejected by adherents of no-longer-
fashionable Java.

• Smalltalk’s second surge was much in evidence.

Written by Niall Ross (nfr@bigwig.net) of eXtremeMetaProgrammers Ltd

* End of Document *

	Smalltalk Conferences between June and September 2008
	Style
	Author’s Disclaimer and Acknowledgements

	Shared Keynotes
	How to find the Bach house in Cöthen, Georg Heeg
	Tampering with Perfection: From Smalltalk to Newspeak; Evolving Smalltalk for the Age of the Net, Gilad Bracha, Cadence Design Systems

	Smalltalk Solutions 2008, Reno, 18 - 21 June 2008
	Summary of Presentations
	Keynotes
	Interfaces without Tools, Vassili Bykov, Cadence Design Systems
	Seaside: Your Next Web Framework and Persistence Solutions for Seaside, Randal Schwartz, Stonehenge Consulting
	Implementing Programming Languages for Fun and Profit with OMeta, Allessandro (Alex) Worth, Viewpoints Research Institute

	Experience Reports
	Porting VW5i/Envy to VW7/Store, Tom Hawker, OOCL
	Using User Changes, Leandro Caniglia, Valeria Murcia, Caesar Systems
	Using Opentalk in an Unexpected Way, Giorgio Ferraris,
	ControlWORKS, James Savidge, Adventa

	Tools and Process
	VASmalltalk 8.0 and Beyond, John O’Keefe, Instantiations
	GemKit, Paul Baumann, Intercontinental Exchange
	Monticello, Colin Putney
	Automating Smalltalk Builds with Cruise Control, Randy Coulman, Key Technology

	AIDA and Seaside
	AIDA/Scribo: a powerful CMS at your fingertips, Janko Mivsek, Eranova
	Why Smalltalk? A Healthcare Perspective on Creating Internal Domain Specific Languages, Rob Rothwell, Fairfield Medical Center
	GLASS: Share Everything, Dale Heinrichs, GemStone
	Building a Seaside Application with GLASS, James Foster, GemStone
	Seaside Tutorial, James Robertson, Cincom

	BoFs and Contest
	Smalltalk Coding Contest
	STIC meeting, Georg Heeg
	Seaside BoF
	GemStone BoF, Norm Green, Martin McClure, Monty Williams

	Other Discussions

	CS13 and ESUG 16, Amsterdam, August 23rd - 29th, 2008
	Summary of Projects and Talks
	Camp Smalltalk 13
	The Custom Refactorings and Rewrite Editor Usability Project
	PostgreSQL EXDI
	Seaside Applications
	COLA 86_64 code generator
	Amelia
	Moose
	SqueakNOS (no operating system)
	Other Projects

	ESUG Activities Reports
	Introduction to CWI, Paul Klint
	Conference Welcome and ESUG Activities Overview, Stephane Ducasse, Noury Bouraqadi
	Presenting at ESUG, Tudor Girba, www.tudorgirba.com
	Smalltalk Awards Ceremony, Noury Bouraqadi
	Books
	Farewell and Next Year, Stephane Ducasse

	Applications, Frameworks and Experience Reports
	WideStrings and utf-8, Philippe Marschall
	WebTerminal: less code more RIA, Wouter Gazendam and Dirk Heijink, CosmoCows
	Using User Changes, Leandro Caniglia, Valeria Murcia, Caesar Systems
	GStreamer: media streaming in Squeak, John Macintosh
	Heating Control System with Smalltalk, Alfred WullSchleger
	Croquet/Cobalt: An Open Collaboration Architecture for Education, Robert Sheperd and Julian Lombardi, Duke University
	Madeo: a CAD tool for Reconfigurable Hardware, Loic Lagadec

	Development Tools and Techniques
	Exploratory Modelling, Rob Vens, www.robvens.nl, rvens@sogyo.nl
	What Smalltalk can Learn from Java, Philippe Marschall
	Advanced Techniques for building Testing Tools, Andrés Valloud, Cincom
	Starting fresh every morning, rebuilding a development image every day, Yann Monclair, JPMC
	Smalltalk Standards Report, Bruce Badger
	Syslog, Bruce Badger

	VMs and Smalltalk Environments
	Keynote: Cog Back to the Future part 2, Eliot Miranda
	Cincom Smalltalk: Present, Future & Smalltalk Advocacy, Thomas Arden, Cincom
	Gemstone, Martin McClure, Gemstone
	MagLev: Ruby that Scales, Monty Williams, GemStone
	VASmalltalk 8.0 and Beyond, John O’Keefe, Instantiations
	A Moribund Smalltalk still alive and kicking: The APIS VisualSmalltalk IDE, Thomas Brey, Heiko Wagner, Jan Kaiser, Andreas Rosenberg

	Aida and Seaside
	Aida, Janko Misvek, Eranova
	Magritte Blitz, Lukas Renggli
	Hands-on Pier, Tudor Girba
	Web Velocity, Jim Robertson, Cincom
	Seaside Evolution; things you never knew you could do, Julian Fitzell
	Glass: share everything, Dale Heinrichs, GemStone
	Seaside, Lukas Renggli

	Modelling Tools and Methods
	MBA Smalltalk: to manage your objects, Mathieu van Echtelt, CosmoCows
	Fame: MetaModelling at Runtime, Adrian Kuhn, Univ of Berne
	Using the Meta-Environment for Model-Driven Engineering, Tijs van der Storm
	Modelling and Mapping Tools, ObjectStudio, Dirk Verleysen, Cincom
	Meta-Modelling Panel, Lukas Renggli, Mathieu van Echtelt, Adrian Kuhn, Tijs van der Storm

	Show us your projects: ten-minutes presentations
	Pharo: help people to invent their future, Stephane Ducasse
	Simple Web Apps with HttpView2, Giovanni Corregida
	Kerala, Alexandre Bergel
	Seaside XUL, Michael Davies
	SeaBreeze, Karsten Kusche, Georg Heeg
	StakePoint
	Nikolay

	Other Discussions

	VASmalltalk Event, Frankfurt, September 23rd, 2008
	Summary of Projects and Talks
	Instantiations Market Perspectives, Nicholas Gilman, Instantiations
	VASmalltalk and today’s trends in IT, Joachim Tuchel, ObjectFabrik
	Portrait of an Agency System, Martin Elässer and Steffan Müller, Versicherungskammer Bayern
	VASmalltalk 8.0 and beyond, John O’Keefe, Instantiations
	Seaside, Joachim Tuchel, ObjectFabrik
	Closing Discussions

	Other Discussions

	Conclusions

