
CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 1
CS18 and ESUG 20, Ghent, August 25th - 31st, 2012

This document contains my report of the ESUG conference in Ghent,
August 27th - 31st, 2012 (and the Camp Smalltalk during the weekend
before it). As there were parallel tracks, I could not attend all talks.

Style
‘I’ or ‘my’ refers to Niall Ross; speakers (other than myself) are referred to
by name or in the third person. A question asked in or after a talk is prefixed
by ‘Q.’ (sometimes I name the questioner; often I was too busy noting their
question). A question not beginning with ‘Q.’ is a rhetorical question asked
by the speaker (or is just my way of summarising their meaning).

Author’s Disclaimer and Acknowledgements
These reports give my personal view. No view of any other person or
organisation with which I am connected is expressed or implied. The talk
descriptions were typed while I was trying to keep up with and understand
what the speakers were saying, so may contain errors of fact or clarity. I
apologise for any inaccuracies, and to any participants whose names or
affiliations I failed to note down. If anyone spots errors or omissions, email
me and corrections may be made. My thanks to the conference organisers
and the speakers whose work gave me something to report.

Venue
Ghent is second only to Bruge (amongst Belgian cities that I know) for
preserving the beautiful old centre of the renaissance town. The streets that
border its canals are very pleasant, with fine architecture in abundance. The
Camp Smalltalk site (at yesplan.be) was reached through a street market on
Saturday, which certainly gave an element of local flavour.

We had rain over the weekend. Adriaan and Phillippe told me I did not need
to seek out a swimming pool for my preferred exercise: “Run in the
morning with us and you’ll feel like you’re swimming”, they assured me.
In fact, the conference venue’s many stairs were sufficient to keep us fit,
helped by the hot weather during the first part of the week. By the end, it
turned quite windy and cooler.

Summary of Projects and Talks
I give a brief Camp Smalltalk 18 summary, then the ESUG activities
reports and the awards. Next I summarise the conference talks, sorted into
various categories:

• Applications and Experience Reports

• VMs and Development Environments

• Frameworks and Tools

• Smalltalk Past and Future

2 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
followed by the 10-minute talk track and Other Discussions. Talk slides are
available at http://www.slideshare.net/esug/tag/esug2012.

Camp Smalltalk 18
Camp Smalltalk 18 ran for Saturday and Sunday before the conference, and
during the conference breaks, afternoons and some evenings of the five
conference days. There were 35 people there on Saturday and 50 on
Sunday. I worked on SUnit, developing patterns for subclassing TestSuite
and TestResult. Others worked on Seaside, Spy and Roassal, Pharo,
Seaside and many other projects.

ESUG Activities
Conference Welcome and ESUG Activities Overview, Stephane
Ducasse, Johan Brichau
This year, there were 129 attenders (15 students, 10 free entrance) to see 30
talks, 2 workshops and 2 tutorials (on metacello and petit parser). Stephane
called for the usual show of hands and we saw there were many new
Smalltalkers, and only two people in the audience who also attended the
ESUG in Ghent in 1999 (and rather more who were at ESUG in Brussels
in 2005).

ESUG sponsors students. There are 15 at ESUG this year, which they feel
is the right number for all students to have tasks to do supporting the
conference.

ESUG sponsors Smalltalk user groups (Russian, Catalan), the Smalltalks
conference, having Smalltalk activities at other conferences (e.g. the
OpenSource conference at Paris: Python, Ruby, etc. - and Smalltalk), and
Smalltalk articles (three in 2012). If you have an idea that would help
Smalltalk and could use sponsorship - or advice or other assistance - email
the ESUG board: the worst that can happen is that the board will say no.
Ideas on how to promote Smalltalk are always wanted.

Stephane showed a slide of the Summer of code projects (see the 10 minute
“Show your projects” talks for details).

They sponsor books, e.g. Andres Valloud’s book. (Stephane is co-author of
some of these books but he does not do it for the fame. If fame matterered
he’d write in Scala or Javascript. In Smalltalk, the ratio of the investment
of time to the fame achieved is much higher.)

ESUG used to offer free seaside hosting. Now it will be done by
smallharbour. The seaside hosting infrastructure is now available in
smallharbour and you can put it on any server.

They get requests for lectures from Spain, Turkey and Africa (Cote
d’Ivoire - contact Pascal Andre if you could give such a lecture). They offer
300 ready-to-use slides.

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 3
Innovation Awards, Jordi Delgado
There were 14 awards submissions on which we voted “en votre ame et
conscience.” At Wednesday’s dinner, Jordi (speaking at a high balcony,
from which he lowered the awards in a basket) announced the winners of
this year’s Innovation Awards. First he presented two special diplomas:

• For promoting Smalltalk to James Robertson.

• For decades of dedication to Smalltalk to Georg Heeg. (As it
happened, Georg’s family were there to see the honour in which the
community holds him, which pleased them and us.)

then the main awards:

• Object-Centred Debugging (Jorge Ressia, Oscar Neierstrasz et al)
came first.

• Hazelnut (Guillermo Pollito, Benjamin van Rysegen) came second.

• Roassal (Vanessa Pena, Alexandre Bergel et al) came third.

At http://www.esug.org/Conferences/2012/InnovationTechnologyAwards
there is more information.

Conference Wrap-up, Stephane Ducasse and Luc Fabresse
Stephane thanked Johan, the local organiser. Johan can attend next year as
a free man. (Niall: “It’s a great feeling, Johan!”)

Georg then spoke about STIC, the Smalltalk Industry Conference
(formerly Smalltalk Solutions - they stole the acronym idea from ESUG).

STIC will be in June 2013. There will be a scientific workshop (please
write papers). Fabian was their first student volunteer last year - Georg
thanked ESUG for sponsoring him. On 24th April 1983, the first ever
commercial Smalltalk system went live. Evelyn van Warden who was
involved is now involved in contacting original Smalltalkers. Hopefully
Adele Goldberg will be there.

(Stephane: maybe synchronise post-conference publication of the papers to
look larger and achieve more impact.)

Next year, Stephane wants a “Show us your business session”, like show
us your projects. Maybe 10 minutes is too long for this. It could be 7, or
limited in other ways: e.g. at a Pharo meeting, each talk had just 3 slides.

Have an Idioms and Patterns session (like Kothen and Brussels Design
session but this time offering solutions). Again this would be 10 minutes
max to present solutions. Aim is to share our culture at the code level. He
liked it that Leandro’s talk was not technically specific to his use case but
general and pattern-oriented.

Stephane then invited feedback. It was noted that a steep stage, with side
stairs, makes it harder to pass the mike between questioners than a level
room. The schedule this year was at first only visible on the web as a google
layout. It should be more visible, ideally on a printout in the hand-outs and

4 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
also on A3 pages posted outside rooms, etc. This was agreed.

Christian felt that one track was better than parallel sessions. I noted that
occasionally a session is of specialised interest, or a repeat of a STIC talk,
so sure to be uninteresting to some people who would be willing to see a
parallel talk if it would not otherwise have room. (Afterwards, not in the
main discussion) James Foster expanded on this: people always want a
single track when the idea is presented to them in the abstract. However
when a concrete case is presented, they would often rather have a choice of
talks than not have the parallel talk in the programme at all.

Someone felt that while the 14 competitors for awards were great, with
such numbers it was hard to see all - you arrive at a station and the
presented was already half-way through demoing to someone else. Video
clips are always asked for and frequently late or missing and to demand
them would be to exclude some entrants. For every entrant to have a poster,
displayed on/by their table, had been done in the past and is recommended.

Applications and Experience Reports
Continuous Integration - a Practical Approach, Maikel Vandorpe and
Elke Matthis, MediaGenix
Their product supports the back-office of anyone broadcasting and
scheduling content (e.g. a TV station). The product has existed for 20
years. In the 90s they were told to rewrite it in Java, did so, went broke over
two years, then restarted the company using the Smalltalk product again.
Now they have a team of 30 developers working on their 1.9 million lines
of code in 15,000 classes (and that’s not counting our VW base). This team
grew to 34 during the conference as they completed 4 Smalltalk hires.
MediaGenix employs almost 100 people overall.

Suppose a TV company has a cool idea for programmes to broadcast on
Halloween. Much has to happen between the idea and the actual broadcast.
They must allocate money, choose a distributer(s) and allocate rights to
transmit. They must provide media of the programme and add it to a file
server. They then must manage a range of tasks - edit, convert format, gut
some parts, change credits, whatever – to get it ready to show on their
channel. Four weeks before broadcasting, TV guide info is needed. They
must assess, based on ratings, when is best in the day to show for the target
audience. Lastly, before airing, they double-check all possible issues: right
media, no more than X minutes of commercials per hour, etc. Afterwards,
they gather statistics, write reports for the government and other
companies, etc.

The MediaGenix system supports them doing that. MediaGenix have
several customers in North America - Fox being the best known - and are
starting to get customers in Australia and Singapore, but most of their
customers are in Europe where they started: 35 all told. All their customers
want everything as fast as possible.

Elke then took over from Maikel. She started to talk about continuous
integration. CI splits release into small pieces, each containing a small

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 5
change to integrate and test. A new version is automatically built and tested
each time you integrate, so it is much easier to detect which change caused
the problem. On average, they have 70 changes each day. The integration
process is easier because each one is smaller.

They run unit tests, of course. They also have 3 other kinds of tests. It
would take 12 hours to run all tests sequentially so they parallelise.

Consistency checks ensure that code adheres to company guidelines. For
example, their product has many windows and the common features are in
TopApplication. Their default menu has 5 menu items, and more are
always added between Tools and View. buildMenuBar enforces this and
a consistency check on all subclasses of top application enforces that no-
one overrides this in a subclass of TopApplication.

A method is part of a whole chain of what a user does. Acceptance tests
imitate what a user does. They have many more acceptance tests than unit
tests. They want never to change the functionality except when a user has
asked for it (or they intend it). Her example showed the use case of a
customer correcting Angelina Jolie to Bruce Willis in a person object
assignment. Acceptance tests are implemented as SUnit tests, like others.

Finally they have refactoring tests. A basic button “What is on?” may have
a basic function but also a different function provided because a customer
asked for it. Thus methodX, called by basic button WhatsOn is no longer
called. Refactoring tests detect that there are no more implementors or
senders, or similar such cases.

Maikel resumed. The test environment wants to get the results as fast as
possible, and to know when a build is broken (i.e. can’t load). A priority 1
bug - cannot transmit on air - must be fixed in 1 day.

They created their own system which runs multiple tests on the same
database. Each test assumes the database is clean (no data from other tests).
When a test starts running, it logs all its changes, and these are rolled back
out of the database at the end of test.

Elke took over again. Roles: there is a test master, an image creator and 4
test coordinators each with 16 test slaves. (They have suitable icons ☺).

A developer releases code changes. A dialog appears ‘Schedule tests?’;
they say yes and commit to Store with preference. The test master can see
a scheduled test in Store. The test master loads, handles/delegates, then
sends results. The test master has queues: to be loaded, loaded now to be
tested. The image creator loads for the test master. When all is loaded, the
image creator tells the test master, which then puts the created image in its
second queue. When at the top of this queue, a test coordinator allocates
each test class to one of its available slaves. The slave runs all tests in the
class then reports it is done and ready to get another test class.

Maikel then opened a video of a test slave running UI tests. Many windows

6 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
opened and had values put into fields and reacted and so on.

The image creator can load up to 4 versions simultaneously, matching the
4 test coordinators available to run each version. Each coordinator has 16
slaves. Users can not run irrelevant tests, and the queue can recognise when
a version is superceded by one later in the queue (earlier one is run
overnight). Priority bug fix tests go to the front of the queue. There is a
time-out of 30 minutes for loading, 75 minutes for coordinating and
similarly for slaves (a test with a self halt left in it can run forever).
Test classes are assigned in a smart order, to avoid situations in which all
earlier-started slaves finish while the last slave gets the slowest test.

If a build fails, its developer is told within 45 minutes. If it loads and tests,
they get an email about how many tests passed, failed and errored. Priority
cases get results within an hour. Others typically wait less than four hours.
A UI shows which versions are queued, which being tested, with estimated
when-done times.

Maikel then demoed some tools. They save test results to Store and the
tools rely on this. He opened a Store browser which shows tests’ status (via
abbreviations) in version display strings. He opened their SUnit-based tool
on the failing tests and reran them to see the causes of failure. He can also
locate from Store the version in which the test first failed.

The important goal is to emulate actual users and to meet time targets:
Priority bugs must be fixed in a day (test results come within an hour), and
others must be fixed quickly (test results come within 4 hours).

Still to do: test every single version, so as always to have a state.

Q(Niall) More acceptance SUnit tests as against developer SUnit tests?
They found they were rewriting unit tests a lot because of all the refactoring
they did. They found more value in user acceptance tests because that helps
them ensure that what they deliver to a customer is what was promised.

Q(Georg) Not testing every version (i.e. jumping over older versions) is
dangerous because an error is always where you don’t expect it? Chris
proposed testing of just changed code using just tests that gave coverage of
that code, to allow testing of everything in a possible time.

Q(Christian) Customer has connection to Store? No, we load using the
same process as we use when building to give to the customer, so we’re
testing what customer would get if that step was the last step in a release.

Q. The developer controls the process but surely even if a developer does
not choose to test, you should still be testing every version? The system is
busy 24x7 so some versions are skipped but most are done during night (or
when everyone is at ESUG).

Q(Niall) Database rollback as against creating or having multiple clean
databases? Each test slave has its own database. It rolls back between tests,

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 7
taking several milliseconds as against 15 minutes to create a fresh database.

Extending a Base Product for Multiple Customers, Denis Defreyne,
MediaGenix
Suppose a Customer asks for feature X, but other customers don’t want it.
If your only option is to add it to the base then either one customer is
unhappy or other customers complain of bloat. Customisations are
customer-unique: they never share a customisation between two
customers; each gets their own.

Customisations are needed because every customer has a different system
and/or a different workflow. You must check that customisations do not
breach any rules: no showing films you do not pay for, no films above
parental ratings, etc. (The various rules are quite different between
countries e.g,. between Finland and Belgium).

MediaGenix has some 30 large loyal customers: this strategy does not work
for 000s of customers.

Customisations must never accidentally land up in the base product. They
are fine-grained, changing specific method(s) or class(es). The main
motives are:

• talking to other devices, such as integrating to external systems:
playout servers, music systems, scheduling systems.

• catering to a varied market in Australia as against the US as against
Europe

• resolving conflicting requirements

• a specific fast fix to keep a customer happy (but beware, do not write
everything as a customisation!)

(His talk examples resemble actual customisations he has done for the three
customers he mainly handles, differing only in omitting some detail.)

He showed a very simple film editor (the real one is a lot larger). If you
want a widget for ID for MTV, you create a new class called a site class
(‘site’ is a synoym for ‘customer’).

Film class>>siteClassForMTV
^FilmMTV

newFilm
Film siteClass new
title: ...

Site>>siteClassOf: aClass
“returns appropriate site class, or base if absent”

There are customer packages, named for customers: FOX, MTV, etc.
PackageB can override a method in PackageA. Thus the MTV package
contains the newFilm override and the FilmMTV class.

8 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
Supermodel means (not Angelina Jolie, quick move on from that slide :-))
but a means whereby they plug in all this. The supermodel of the Film class
gets the model-layer stuff for the new ID for MTV widget but must also
override in the form class to make the widget appear.

Site>>siteClassOf: aClass
addFormField: #idForMTV

Must you call siteClass everywhere? yes. However if you forget it you
will likely notice (and if you don’t notice and your tests pass, you are OK).

Important: avoid long methods. Short methods are easier to override to
change the behaviour you want.

You cannot siteClass superclasses: it complicates the inheritance tree.
In such cases, they move any methods they want to siteClass into a
delegate, e.g. Product (subclass Music, Film, etc.) can have behaviour
moved to a ProductBehaviour delegate, which can then be siteClass-ed.

ProductBehaviour>>isValidCertFor: aTx
“can customise parental controls”

Lastly, they have convenience methods to make some common cases easier
than creating a site class. By calling an addCommandsToToolBar: basic
method, then addCommandsToToolBarForMTV: etc. in

SiteForMTV>>buildmenuFor: aToolBar
self addCommandsToToolBar: aToolbar
self addCommandsToToolBarForMTV: aToolBar
...

they can give specific menu items to specific customers.

So their techniques are to use (in this order for preference) site classes,
behaviour delegates or convenience methods.

Finally, a Module is a pluggable component, which can be enabled and
disabled, where some customers buy some modules. They have modules
for ContractManagement, for SecondaryEvents (e.g. the logos that popup),
for VideoOnDemand, etc.

If they want a buildSuperModelWith: in the Film class, and to extend
the super model in a module,

self modules do: [:each | each buildSuperModelWith: ..]
... addFieldsTo: form for: self

(The null-object pattern ContractAbsentModule does nothing when code
like this is called on it.) He demoed enabling the contract module, so
causing the contract field to appear via this mechanism.

Modules can be shared between customers whereas site classes are meant
to be customer specific. Modules require hooks whereas site classes can
use overrides. (N.B. he means overriding a method in a subclass of its
defining class, not overriding the code of a method in situ. They only use
code overrides where they change the VisualWorks base).

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 9
Q. Testing customer-specific code? There is no special procedure, just the
process spoken of in their other talk.

Q(Nick) There is much code in the database layer; do you ever customise
that? MediaGenix have written an OR mapping framework. Denis does not
do much with it.

Q For every site the tests are run? Yes. If he customises MTV then he puts
code in the MTV package and it gets scheduled and all 30,000 base product
tests are then run plus any specific to that site.

Q(Michael Prasse and Niall) if three customers want the same
customisation? The Film class exists in different branches in several site
packages. It’s a vague, case by case, process to decide when and whether a
customisation has become popular enough to be in a module or the base.

Building a Business with Cincom Smalltalk, Arden Thomas and Dirk
Verleysen, Cincom Smalltalk
This talk demoed the whole process of building a business-support app,
showing enough of each part of the process to make it clear how each was
achieved. ObjectStudio is windows-centric. VisualWorks is cross platform.
Both run on the same base.

Design and Modelling with the Modelling tool provides some code
generation that, via bi-directional development, gives the model layer and,
via the mapping tool, the object relational mapping and database creation.

The scenario is that Dirk and Arden are hired to solve a health and fitness
club requirement. The club administrators need a software system to track
members, dues, club attendance, guest attendance. They want to do
promotions to their members. They want to send happy birthday emails.
They want to send promotions to those who sign up as guests. They want
to keep existing members happy and get new members. They want a web
presence, with class schedules online. Classes are limited in size, so the
club wants to allow reserving of a spot in a class online or via smart phone.

The club’s employees also need features. They must login to software. Data
must be backed up. There must be a backup plan if the membership card
reader fails, or the whole computer fails.

Arden and Dirk start with a database of current members from an earlier
failed attempt to build software.

ObjectStudio supports the usual methods (Rumbaugh, Wirfs-Brock, Coad-
Yourdon, etc.) and free-form design. The process is to get the customer’s
inventory and their 30,000ft view with their terminology, so begin to
understand their business. Thus they create the model and walk through
with the client. The model must be iterated until it is OK. The client must
often see a wrong model in order to discover the right model.

Actors (employee, member, guest, greeter, coordinator, instructor, trainer)

10 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
have use cases. An RFD reader will automatically check in members. Dirk
and Arden asked, would it help you to also track when they checked out?
Clubs usually don’t, but when it was suggested, they said yes. As they are
monitoring RFID tags, they could put them on the machines to see what is
never used maybe it is broken but not noticed).

Example use case: if a member goes on holiday for a month, they can put
their membership on hold, pushing out their end-date.

ObjectStudio’s generator is white-box so it can easily be changed by
customers with specific variant requirements. ObjectStudio has several
tools (Use case, Explorer, CRC, ...) to model use cases.

The mapping tool can be used in three typical ways:

• do model, create domain classes, generate matching database tables

• do model, create domain classes, map existing tables to domain classes

• create domain classes from existing tables (unusual)

Our ObjectStudio system will need a client interface in the club, a web
interface for members not at the club, and a way of connecting to the RFID
interface (they use an ActiveX component).

Dirk started ObjectStudio and opened the modelling tool diagrammer. He
created classes Person, Member, Employee, Trainer and CreditCard. He
created a hierarchy (Person subclass Member and Employee, subclass
Trainer, FrontDesk). He then defined attributes for the classes: names for
Persons, expiration time data for CreditCards. He created a relationship
between CreditCard and Member.

At this point there are no Smalltalk classes (Dirk showed there was no
CreditCard class). He then generated the code, and showed there was code
on the classes that maintained relationships. Dirk noticed the Person class
wanted an age method, obtained from date of birth. The model now shows
it has an age method. (This also works if you change code in the debugger
or in workspaces.)

He then created a database and tables in the tool. He picked a class, checked
the DB mapping of its instvars in the table, assigned to public schema in
Glorp. Then he set primary keys, foreign key constraints. Again, he
demoed that there were no tables in the database and then (after the usual
demo hiccough - he forgot to map classes to tables and save to a descriptor
system) pressed a button and they were created. He created the descriptor
system ESUGFitnessDescriptorSystem in package ESUGFitness.

He ran a simple script to create two members, one with two credit cards,
then used pgAdmin to show the data had been entered. Only the members
were registered but the credit cards were in a foreign key relationship with
the members so they were written too.

Next he created a UI widget by drag drop (widgets and their labels offered
when he selects items in the model). He tweaked date format and layout of

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 11
fields, then generated the form for entering members. He showed the code
created on classes to preserve data.

He showed the front-desk window next, with panes listing next exercise
class and who is enrolled in it. They check people in and out so can see how
many are in the club, for fire regulations and to know when closing up for
the night. He created an AidaWeb / Swazoo site and he started it (doIt in
ObjectStudio launcher) then opened a browser on it. He registered for a
class and then (should have seen that he) was in the front desk UI list as
registered for that class.

There is support for migration of data when the tables change.

Q(Christian) How does support for migration of data as the tables change
work? You use old descriptor to read and new descriptor system to write.

Q(Leandro) Programmer works in modelling tool window? That is for the
programmer to work with the business analyst, or the analyst on their own
to do that.

Q. More than one developer? Currently only one model can be open at a
time for the bidirectional modelling. They are looking at collaborative
modelling. (Andreas) Store is in ObjectStudio, like all VisualWorks
features, so one modeller can give their output to 15 developers. Those 15
developers can change code and then the one modeller can load
successively the 15 changed developer versions and merge each into the
single model. So many developers is OK, just not many concurrent
modellers.

Testing Smalltalk AJAC/SJAX Web Applications with Selenium,
Carsten Harle, straightec
Carsten is the founder of a company that provides teaching applications.
He also consults for Datenzaentrale, who handle taxes (dog, kindergarten,
waste, etc.). The application of the talk started as an ObjectStudio fat client
and now also has a web client using AJAX and SJAX (Synchronous JAX).
90% even of the GUI code is reused between the fat and AJAX clients.
(The latter uses the Prototype library which he may convert to JQuery.)

A web app must support many web browsers: IE from 6 through 8, Firefox
3, 4 and 5, etc. He had to be able to test on all browsers. His test framework
had to be fully scriptable from Smalltalk and compatible with SUnit. It
must be able to wait for the AJAX call to finish. (Usually you are using
special message boxes and wait cursors, and the tester must wait for these.)

12 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
There is a large test team and he needs them to be able to write tests without
much Smalltalk familiarity. They are in fact using Smalltalk syntax but
they don’t know it. Selenium has a UI recorder and Carsten wrote a
Smalltalk API to drive it, plus custom code for special UI widgets. He put
this together with his continuous test and build framework (see his 2006
ESUG talk: on publishing code, automatically tests start running on it and
report failures). This API was of form

selenium action: <Locator> {value: parameter}
e.g.
selenium click: #buttonMyName ...

The problem is that raw selenium is often unreadable. His slide gave a good
example of trying to click in the second line of a list. The commands were
completely obscure on the slide (and wouldn’t work anyway). His API has
helper methods:

selenium click:
(selenium listView: #ctvOverview row: 2)

became (so that his users did not have to get brackets right)

selenium clickListView: #ctvOverview row: 2.

Clicking in expandable widgets needs to work regardless of which levels
of tree view are open, e.g.

selenium
clickTreeView: #ctvOverview
itemlabelPlus: #(‘Water’ ‘WasteWater’).

works regardless of which levels of the tree view are open. It opens what it
needs just as if a user was going to it. This makes the tests more robust.

Carsten made special accessors for tabs and suchlike widgets for testing.
Everyone in the team knows these widgets and can talk in those terms. He
can click buttons in a toolbar, click items in a tree view, etc.

Sometimes you get the wrong dialog box during your test. They’ve never
actually had ‘Format Hard Disk? appear instead of ‘Open Order Book’ but
the code checks the dialog box has the right title before clicking ‘yes’.

He then opened an image and a Firefox and had the tool record all his
actions. He pasted the code into an SUnit test and ran it. It opened a new
browser (you can have the tests reuse the browser, but it is more reliable to
run always in a new browser, so one test’s failure does not corrupt the next).

He showed a left-side menu that stays open at a given context after
clicking, so the test needs to handle the state of the menu, find what is open
and, as if a user, walk to the right menu-open state for the current test.

While some tests are created from recording as he showed above, others
can be manually written. Usually, one generates, then transforms by hand.
However often a single conceptual step is 5 or 6 clicks so you write it
manually to express the intent rather than show the lower level click-by-

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 13
click recorded command. Carsten would like the recorder to reason up to
that level but that is harder. The intent code is almost plain English and
even non-programmers can write it.

AJAX request are asynchronous, so spurious no page load errors can occur
in parallel with some delay in the expected return. For example, list views
make asynchronous call backs and you must not click in a list view until its
contents have been rendered. Just waiting 1 second is mostly slow and
occasionally unreliable, so they have Javascript code to know when
callbacks will happen and wait for them.

self addWaitCondition:
self class waitConditionPrototypeAjaxRequests.

You can have modal dialog boxes which create their own wait cursor
instead of the standard ones. Sometimes you can interact with elements in
the browser even though there is a modal dialog open. Special Javascript
detects presence of such dialogs and “click but dialog box in way so fail”.
You can click in a standard message box by giving the element

selenium clickMessageBox: <element>

or an explicit location. Customers may disable some input fields but the
tester may attempt to write to them, so must detect this and raise exception.

You have easy access to Smalltalk objects.

self assert:
self activeController object bookName = ‘Moby Dick’

This lets you test much more powerfully by modifying the Smalltalk
model-layer object as part of your test. Of course, an actual user cannot
access, still less affect, the Smalltalk objects except through the web UI.

He demoed again, showing how the tool ran fast by not using a ‘wait one
second’ style approach.

GUI tests are slow compared to other SUnit tests. They have 600 - 700 UI
tests and it takes 8 hours to run them. They have a cloned virtual machine
- 30 clones of it and they plan to double that - and these clones coordinate
the test runs between themselves (see his 2006 talk). He showed the status
report: green means passed in your image, blue means passed or failed in
another image.

Q(Niall) Available? He will ask his customer if he can make his selenium
add-ons open-source. (I also mentioned that Carsten had no demo hiccough
- clearly the talk was well-tested too. :-))

Q(Martin)? Carsten explained that serialised JSON handles coms so it is
easy to write language bindings.

Q. Visual result checked? No, they check values in widgets (or in Smalltalk
code) obtained by operations. They can generate text print-outs of XML
and compare to text.

14 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
How do I represent model scenarios, Leandro Caniglia
Their users (oil industry) build models using their software. They change
things in the model and then want to compare scenarios to analyse different
strategies. He showed a simple example where he has a reservoir located
in deep water with several wells: appraisal wells and main wells; three
locations, main with 10 wells, two auxiliary with 5 wells each. Software
appraises cost of these activies against value of selling resulting oil.

Rigs are costly and are options: various wells can be drilled with various
rigs. He scheduled some activities, using the two rigs to start drilling
exploration wells, then appraisal wells, then building the three facilities. In
this schedule, all three are ready at the same time, along with a pipeline.
Then you drill the production wells. He then ran a simulation of this plan
being done. Things are as expected except for the time which is longer than
scheduled. The plan had the same rig drilling two facilities’ wells.

He showed the reservoir estomated rate: exploiting the reservoir and then
production ramping down by 2028. The graph shows lower and higher
lines, the lower being the limit of the planned systems capacity, the higher
being what the reservoir could offer for those wells.

He wants to explore the effects of giving the plan another rig, or expanding
the capacity, without losing the original model. He made changes and
showed them being logged (spreadsheet-like display). Smalltalk is an
example of classes and method being executed to get results: classes and
methods are specifications of objects that come to life when the messages
are sent, leading to specific results. In their system, the model spec, the
simulation of it, and the results obtained, parallel this.

Cloning a model spec is one way to track scenarios. It loses the connection
between the original and the copy so you’ve lost synchronisation. As the
base model is altered, only the alternative scenario changes should differ
between it and a scenario based on it.

Smalltalk has a logging system where you can (re)execute every change.
Using that as inspiration, they model the changes they make to a spec and
make them (re)executable. Class UserCommand knows the receiver and
selector of the change, and the user who made it, when they did, etc. It has
subclasses ResourceChange/Creation/Deletion/Renaming/Duplication.

He opened a tool, created a scenario with another rig and showed the
changes list. Every pane in the UI has a model object. They wrap the model
object. The wrapper registers the message as a change and then sends that
message to the model. The change set transforms simple objects using their
change representation, and has ways to handle more complex objects.

Running the scenario shows that adding another rig alone loses money
while expanding the capacity alone makes money. However doing both
gives a better result than either on its own! This is a good example of how
modelling scenarios gives value.

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 15
A single wrapper class is enough: it has wrappee and changeset as its only
two instvars. All methods on the wrapper do the same thing with different
arguments. These methods are generated when first called, just to replace
DNU with a faster mechanism (asking the developer if in development
state of system).

Lastly, their scenario modelling system can consider uncertainties. They
can run a monte carlo simulation in their system. That run shows the add-
rig strategy has a probability of being good in itself.

Q(David) Your example combines two scenarios; done automatically?
Done easily.

Q(Carsten) Why do you automatically created wrapper methods (all mixed
into one class)? It records the API of the application and you can sell that.
All methods in the API can be seen for metrics, documentation, etc. Many
applications use this protocol that is in one class.

Refactoring Support for Smalltalk Using Static Type Inference,
Martin Unterholzner, Lifeware
Martin works at Lifeware, a Swiss company that provides lifetime support
to insurance products. 35 people, almost all developers, now work at
Lifeware. The company has existed since the 90s and has more than
doubled in size over the past 5 or so years.

Smalltalk (and even more Lifeware) has many tools to support refactoring:
making changes that preserve behaviour. He showed a trivial program in
both Java and Smalltalk. Classes Bird and Cat both understand move and
we rename to fly. This is an example of Java’s strong type system.
(Ignoring CASTs) we just rename move() to fly() in Java. In Smalltalk,
a static method rename would rename move to fly for both Cat and Bird.

In his example, the polymorphism of move is not actually used. Absent a
Java interface, we cannot use these methods polymorphically. In Smalltalk,
we can use them polymorphically so the default refactorings assume you
do in fact use them polymorphically.

We can enhance our refactorings if we use knowledge about actual
polymorphism. To get this information, we use type inference and
symbolic evaluation. You walk the parse tree, recognising literals,
asignments, message sends and etc. He stepped through his simple
program, showing the steps of type evaluation.

Q(Georg) you introspect new? Yes, Martin works down to primitives
whose type effects are known.

This works in theory for renaming. He could extend it to other refactorings.
He randomly chose methods in Lifeware’s image and type-inferenced
successfully for 25 - 40% of methods (the percentage differs between base
code and for-customer code).

16 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
Finally, he demoed on his example program. The RB changes browser
opened showing that move was renamed to fly was renamed in Bird and
its callers, but not in Cat and its callers.

Q(Stephane) You have looked at RoelTyper (in the Cincom Open
Repository)? (Niall) Also at RBDynamicMethodRenaming (in VW and the
Cincom Open Repository)? (Alexandre) Use dynamic profiling with unit
tests? There was an offline discussion – Martin was interested.

Q(David Chisnall) perhaps you could reach 80-90% with a very little
hinting; have you looked at where hints are needed? Hints tend to be
needed just where hinting is really hard to do.

Q(Stephane) Simplify by reducing scope? Yes, easy to do by hand-
programming in VW. (It should work the same in all dialects to restrict the
scope by restricting the base BrowserEnvironment of the refactoring).

He will make it visible and would be glad if others wanted to work on it too.

VMs and Development Environments
iOs: Smalltalk and ObjectiveC, Tansel Ersavas
To learn Smalltalk, other programmers must unlearn what they have
learned. To learn ObjectiveC, Smalltalkers must relearn some of that.

Tansel asked if anyone was using ObjectiveC? - yes, several hands. Then
he asked if anyone was loving using it? - no hands. For Smalltalkers, it’s a
step down, for others it is a step up. ObjectiveC separates interface and
implementation. There are many UI-related macros.

He began demoing with examples of some Smalltalk in ObjectiveC such as
[self.navigationController pushViewController:videoStarter
animated:NO] and [UIView setAnimationDelay:wait:]. Then he started
merging C and Smalltalk and commenting on some ObjectiveC quirks.

He showed an example of defining an audio device interface, colour-coded
(purple for macros). IBOutlet and IBAction will be provided by the user of
the interface. The - sign shows instance methods (class methods start with
a +). Then he showed an implementation of that interface: synthesizing
creates getters and setters for the button widgets.

ObjectiveC provides much of the same meta-protocol as Smalltalk, e.g.

+(BOOL) instancesRespondToSelector:aSelector
-(BOOL) isKindOfClass: aClass

and so on, but it does not have become:. ObjectiveC naming conventions
are verbose and otherwise Smalltalk-like. A good ObjectiveC tutorial is at
Cocoa Dev Central.

On an iPad, he showed a few days work to get a walk-around dungeon area.
The ability to get this done in a few days is the reason he likes working in
iOs.

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 17
Dowloading XCode from the apple site is free but needs registration and
OS-X (not native Mac hardware, just OS; on Windows and Linux, you can
use VMWare to run OSX). iOs uses XCode. Do not expect the Smalltalk
IDE; XCode is a different environment. It is getting better daily.

He opened the many-windowed IDE. There’s an output pane (Transcript-
like) and a quick help pane. The interface builder is part of it, so you create
your UI icons / widgets and connect them to behaviour. You must have paid
for registration to run the resulting app on your phone. You will need
custom artwork to provide the essential quality of look. (Or be a graphic
designer and read the Apple UI guidelines.) Apple, and the web generally,
provide many images.

The retina display is new. Apps should cater for it, or be scaled in and look
poor. For retina, all artwork must be in twice the resolution targetted (just
append @2x to those files).

Your iOs platforms are iPhone, iPad touch, iPad, or universal (runs on all).
You choose the orientation: portrait, landscape or make it work in both.
There are many apps but they can be categorised: 1/2 page apps, tab apps,
etc. The iOs demo shows a level balance that is a good example of a simple
one page app. The periodic table list is a good example of a tabbed app.
Navigation-based apps create a tree-like structure, usually with a
navigation bar at top. He showed his baby example.

OpenGL games can be less compliant to Apple guidelines - they are
whatever they are.

If XCode is too fiddly for you, you can use tools. Many claim to be cross-
platform but you need to check this on the web to see what their users say.
HTML5 operates quite well in the Apple world. You can’t make an Apple
app just with this, but it will look like an app - and can be bundled in an app
if you need to put it in the Apple store. There are also tools for 2D and 3D
game creation. These tools let you build stuff impractical with just XCode.

He consulted with a company to scan a museum in Istanbul and make it a
walk-through app. He could not have done this in XCode.

There is a web course on app development from the university of Stanford.

Q(Christian) Any second thoughts about working for the dark emperor? He
is riding the wave, not working with them, zen-fashion.

Q. Ruby? He’s worked in it for 3 years. Tansel dislikes the syntax but is
otherwise OK with it. Many people don’t give the mental investment to go
to a new environment that will be more productive. The Alan Kay
experiment in Japan, introducing Smalltalk to children will make it hard for
C and Ruby to unlearn that. But too many people get corrupted in school
and university before they have the chance to learn Smalltalk.

Q(Noury) using the web to embed into iPad to avoid the apple store and

18 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
XCode? Tansel dislikes the web, but has started to use javascript and
HTML5. Alan Kay’s 1997 OOPSLA talk is as relevant today as then.

Cincom Smalltalk, Arden Thomas
What do Cincom Smalltalk and the Tour de France have in common? Well
one thing they don’t is that Cincom Smalltalkers use no drug except
Smalltalk. Smalltalk is addictive. The debugger - studing the code live, not
doing an autopsy on a corpse - is one of Smalltalk’s many addictive
features.

Arden’s talk was not a Tour de France but a Tour de Force around Cincom
Smalltalk, using some Tour de France features as analogies. The race has
riders from all over the world and so does Smalltalk. Each team has a
manager, usually someone who has been in the race before or who has done
bicycling before. Arden is the product manager. He’s been developing in
Smalltalk since the late 80s. Suzanne is the programme director for
Smalltalk - her history starts with digitalk way back when.

The ‘peleton’ is the big group of riders who stay together in the race. If you
are behind another rider you use less energy (air resistance). Each team
often has a GD rider who is the one whom the team are helping to win. The
domestique rider sacrifices themself to help the team - e.g. by getting in
front and breaking the air (i.e. the air resistance). At the end of each day
they hand out coloured jerseys: white (best young rider), green (best
sprinter), polka dot (best hill climber), yellow (the current leader in the
overall win points table).

The current latest releases are ObjectStudio 8.4 (8.4.1 will be released this
autumn) and VisualWorks 7.9 (7.9.1 will be released this autumn). Using
his racing analogy, Arden began awarding jerseys for past, present and
upcoming features in these products.

The international community category: VW has always been cross-
platform, and has introduced CLDR internationalisation and unicode VM.
VisualWorks also keeps up-to-date with Seaside. Xtreams has been open-
sourced for the community (and external projects have used it, e.g. Colin
Putney’s). Xtreams was rewritten four times to be clear and effective. In
future, there will be better Font rendering, kerning, unicode 6.1, and
rendering non-Latin. (Integrating Pango would have solved some things
but the new approach does 80% of what Pango would do and it is all in
Smalltalk.)

Best new feature is WSDL 2.0, the SOAP 1.2 revamp, and latest is external
encryption. External encryption offers more choices, sometimes a gain in
speed, and lets you adhere to using a specific library in cases where that is
demanded. For 7.10, we anticipate IPv6 and a new TextEditor. (Their old
TextEditor has survived from the old Xerox Parc days. This testifies to its
being well designed but it is time for a re-creation. The new editor is
enabling some good things.)

A sprint means an experiment. VisualWorks has Delays (he means the class

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 19
Delay - not that it’s slow :-)). These worked fine in some cases, not in
others, and now they’ve been reworked to function in all cases. The current
sprint is Skins which we’ve now got in. Next release, the sprint will be the
TextEditor.

Climbing awards are given for making progress in difficult areas. Making
64bit in Solaris and Linux equi-capable with our 32bit product was
certainly that. We want to make Store faster and also to offer better
configuration management. We will develop these new features by using
them internally and then offer them to customers. We aim to make other
improvements to Store. The font framework is being revamped.

The Domestique award: Polycephally is a framework that uses multi-core
processors. People started using it and got benefts e.g. in running test
suites. Polycephally II is now out; this lets you use remote computers, not
just multi-cores - i.e. grid computing. There have also been database driver
improvements - thankless but important work. The same could be said of
the work that made Windows 64, Com 64, Oracle 64 and ODBC 64 part of
the main release. GC improvements have been done - including much old
C code retired to make a cleaner and leaner virtual machine. Future
domestique awards will go to code completion, code highlighting and this
needs better text editor parser work.

The overall winning feature was Polycephally / Polycephally II, is
encryption in the latest release, and will be TextEditor in 7.10.

New features: the Project Launcher helps brand new users, and helps deal
with restrictions in recent Windows operating systems on where images
can live, as against where the installed product can live. If you could use
the Project Launcher for more things, suggest it to Arden (or just do it and
show us the code). Cairo graphics are now there. The latest best new
feature is Windows 64bit. You can have 30Gig of memory in your image
for a fast huge model. (Arden noted that Windows 7 64 is the first Windows
64 bit OS that is really practical.)

ObjectStudio lets business people and developers work together. It is the
only Smalltalk with the Windows 7 logo (so it gets the international
community award). It now runs on the same VM and underlying code base
as VisualWorks. The mapping tool now uses the shared Glorp platform. In
future, we look to use shared COM.

ObjectStudio’s best new feature was the revamped model and mapping
tools, is the mapping tool on Glorp, and in future will be the UI work (see
Andreas’ talk). Its best sprint was getting Vista certification and will be
getting beyond Windows 7 logo to have Windows 7 certification.

In future, we will do R&D work. We want to keep our customers happy and
to grow the community. We will use Store config management ourselves to
know what is best. We will do (yet) more testing.

Our release process has changed. We do semi-automated weekly builds

20 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
running a huge battery of tests. Arden, before returning to Cincom, worked
for a customer: a hedge fund. That customer had hundreds of applications
and to move to a new release was a lot of work. Would a longer release be
better? We tried it but no, it slowed the freeze and release. So we returned
to annual releases. Customers asked for a true maintenance release, not just
a dot release that is a smaller new release. Now our dot releases are true
maintenance releases. Support and engineering now work very closely on
these dot releases.

Sportsmanship is really important in the Tour de France. Cincom will
support ESUG and STIC, we have open-sourced Xtreams, we will directly
and indirectly (through partners and customers) employ Smalltalkers. We
want Smalltalk to succeed.

Pharo, Stephane Ducasse
Pharo’s aim is to let you become creative in Smalltalk, including making
money with Smalltalk. The Pharo consortium’s purpose is not to make
money for itself. Even 5 years ago, Stephane would never have believed
that INRIA would sponsor Pharo. That Pharo is used was key to letting
them break in. He listed success stories such as Cmsbox.

In Squeak, Stephane would ask about something and they would reply
“Yes, we can do that” and Stephane would reply “but I can’t”. Pharo must
be easy to use.

Pharo 1.4 is the maintenance release. Pharo 2.0 is the new major release.

In 2.0 alpha, you can see the new Nautilus browser, the new Filesystem
(from Colin Putney, better than 70s-style FileDirectory in which ‘rename
file’ could take 20 minutes!). There is a new package implementation (and
manifest) and a new system announcement framework. 2.0 will soon use
metacello for its integration. The new core is 1.36Mb (or, in hazelnuts,
120Kb).

“How many use Smalllint? You do it every accept? No, you do it every
month.” Stephane wants it to be (fast enough and accurate enough to be)
done on every accept.

Q(Jan Vrany) I use Smallint on every accept but it’s useless because there
are so many false positives? When they start using it on every accept they
will see and fix or remove these false positive rules. They will use the meta-
information.

There is a great deal of community work. Sven’s Zinc work was shown in
a 10-minute talk. There is also the serialiser of Martino et al, the key
mapper of Guillermo Polito, Ring (Veronica Uquillas-Gomez) which
handles classes in image or on disk or other locations, and many more. The
Athens Graphics 2.0 will indirect the vector Graphics canvas so that Cairo
or BitBlt or other backends can be used without difficulty (it is being used
by a guy in Lugano to make a zoomable UI.)

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 21
“Who wants Opal 2.0?” Lots of hands “You see, Marcus, they all want
Opal.”

Pharo 3.0 will use Tanker as its binary code loader. Then code can be
loaded fast. He wants to be able to load chosen packages (e.g. Seaside)
from just a DVD with certification, and tests being run.

The process is that you save the configuration in your local repository.
When you want to share it with the world, then you share it to the Metacello
repository. (That repository should be able to go down without affecting
your local work.)

The FFI situation in Pharo and Squeak is a mess. We want a single FFI for
all cases, loadable without needing expertise. NativeBoost will give this.

Bernard van Rysegem is working on the browser.

The VM - every time they think Pharo is cool, they think about the VM and
are brought down to earth again. Their first step was to ensure that
everyone can compile the VM. In the past, a skilled sorceror from a high
mountain came and did it and went away again. Now the VM is compiled
every day. The code is in Git so that anyone who wants to fix VM stuff can
do it and put in Git, not have a hard time presenting it for review.

How can we sustain Pharo? How do we structure the community? Should
we rely on people’s free time? In 2009, Stephane started talking to INRIA
lawyers. The plan is to announce the consortium in October. INRIA will do
any hiring. (French admin is not something you want to do for hiring one
person. If Stephane submits a request for reimbursement of a 6 euro train
ticket, it costs the French state 150 euros checking that request, so
economies of scale are essential.)

People and companies can become consortium members, which means
getting privileged access to the core development team, ability to influence
the priorities of the next development, and some engineering support time.
Pharo itself will remain free.

You can also be a sponsor (grades ‘normal’ and ‘diamond’). Every member
is a sponsor but you can also just be a sponsor: you get the logo and some
nice feelings.

For companies, gold membership costs 4000 euros and gives 4 days of
engineering time. Silver membership costs 2000 and gives 2 days. Bronze
costs 1000 and gives 1 day. “So we are much more expensive than Cincom,
but that’s the price of freedom, no?”

Individuals pay 40 euros for membership or 99 euros for premium
membership. Every member gets their own blog.

Pharo by Example was translated to French, Spanish (all dialects :-)) and
Japanese. The German translation is mostly done. ‘Deep into Pharo’ is a

22 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
new book they hope to release by December.

Q(Georg) changes to Pharo: how to handle them in books? Stephane is a
great admirer of Smalltalk by Example but he now wants to avoid tutorials.
In ‘Deep into Pharo’, he will focus on the new things and videos. What
James is doing shows the way: anyone can make a video. (Stefan
Eggermont offered to advise anyone wanting to make a screencast during
the sprint.)

Every single contribution is valuable; reporting that a bug is no longer
there, or does not reproduce, is important. Two years ago, Stephane did not
know Zinc. Now Zinc has replaced a lot of old stuff. Much work from
Sven, of course, but there are different levels of participation.

He showed the list of Pharo sprints: some in 2009, 7 in 2010, 3 in 2011, 3
so far (counting this one) in 2012.

Q. When is the Seaside one-click image being updated to 1.4? When
someone does it - by all means volunteer to do it.

VA Smalltalk, John O’Keefe
John’s black eye is because he and Seth met ten Java programmers in a dark
alley the other night. Two Smalltalk programmers can deal with ten Java
programmers easily. (Or it could be to do with slipping on the sidewalk
recently :-)). John has been working on VA for the last 20 years.

VASmalltalk 8.5.1 was released in March 2012, VASmalltalk 8.5.2 will be
out in September. This talk is about things added in 8.5.2.

Seth has done work on code completion - see his talk. 8.5.2 will add it to
inspectors and that will complete the work.

They’re adding a Monticello importer: import mcz files, handle pool
classes to pool dictionaries with _PRAGMA_ methods generated, map
packages to applications, categories to subapplications (based on rules),
generate loaded/removing methods. They have beta supprt of the
zip/unzip: it works for Monticello’s needs but needs testing beyond that.

DateAndTime class now offers TimeZone support, using the Olsen
database. Conversion between timezones work. Time arithmetic spanning
the summer/winter change works.

They had many logging frameworks and no common API. There is now a
common logging framework, log4s, with ideas from log4j. This is .ini-file
configurable, so behaviour can be changed from one run to another. They
use block parameters to ensure performance stays good when not logging.

Their preference setting framework was improved in 8.5 and more for
8.5.2. Settings were in a workspace, or well hidden in some cases. Now
validSettings holds arrays with non-homogeneous content, read from a file,
and (almost) all their code now uses it.

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 23
External functions can be supplied by external .dll or .so files. These names
can change over time, or between Windows and Linux. A method held the
logical-to-physical mapping. Now an .ini file does, easier to change.

They use native platform widgets. In 852, they offer Windows Rebar
control. (Rebar is the Toolbar that has a grab handle, can be resized, etc.)
They also have better progress bars: smooth (not blocks, marqee-style).
Date widgets are provided.

851 has Seaside 3.0.6+ and Grease 1.0.6+. 852 will make no changes (not
enough to be worth changing); they’ll do another step for the next release.

Documentation can be read from their website or installed locally and in
either case is read in a browser. Now, Google search can search their
documentation. (Google rules do not go through Javascript; almost all their
content sat behind some javascript.) James Robertson has been creating
podcasts for them and they are about to put up a page of 80 - 100 podcasts
at http://www.instantiations.com/resources/st4u_videos.html.

They improved Envy performance in 8.5.1. In 8.5.2 they have improved
performance of browsers to remote Envy repositories (the chatty protocol
is now somewhat better). Glorp is upgraded to 0.4.190, and will move
forward in each release till it is current. System>>getProcessId was added.
Some Seaside components were added. WebServices have some cleanup
code. They support Windows 8 (not metro - no suprise) and Ubuntu 12.

60+ bugs were fixed in 851, 50+ in 852. Releases will continue bi-annually,
usually aimed at the STIC (just before) and ESUG (just after) conferences.

Tell John what VASmalltalk needs. He may not do it, but if you don’t tell
him then he for sure will not do it. He wants to do full unicode support
(only supported in some places at the moment). He wants to keep Seaside
up to date and provide continuation support (they do have a plan for that).
He wants SST Servlet multipart support, Web Services tools and debug,
and a more validating XML parser. They will finish zip support. They want
to upgrade security support, moving to full OpenSSL 1.0 wrappers.

In 2011 John showed a prototype GTK support that will let them offer more
widgets. They are still working on it. Fabian worked on it at the Hasso-
Plattner institute. Change browser and merge tools could be improved.

Seth is their new VM lead developer: he’ll look at GC, 64bit, etc.

JNIPort is on VAStGoodies. Every talk, John says that the next release will
use the standard Windows installer. :-) It is now in beta and after some
feedback it may finally happen! Unix installs will move to DEB/RDM
(will support headless installs).

Educational licenses are free for teaching. Standard licences and evaluation
licenses are available. As appropriate, email info or sales or support or
john_okeefe, at instantiations.com. Open Source projects can commit on

24 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
http://www.instantiations.com/company/open-source.html.

Code Completion Seth Berman, VASmalltalk
Human ability to recall names is limited - especially for some of the
weirder methods. The aim is to make suggestions be smart.

This feature arrived in VASmalltalk 8.5 (last August) driven by a
comunnity discussion. Users in the community started both the
requirements and the implementation. Seth started at Instantiations 1.5
years ago. He took this task and ran with it.

This feature showed larger overall changes in 8.5.1 than in 8.5: there were
many new features and exposing of configuration options to users. They
wanted to show an excellent standard experience, i.e. what people were
used to in terms of VisualStudio, Eclipse, etc, then support configuration.
Pharo users like ‘tab’ completion but much of the world is accustomed to
‘enter’, so ‘enter’ is the default setting and ‘tab’ is an available option.

By the time of VASmalltalk 8.5.2, the code completion utility was mature.
8.5.2 added code completion in inspectors, better configuration, theme and
match highlighting engine. It could match CamelCase acronyms, not just
prefixes. It had live filtering support using hotkeys - change the defaults
just for this current match as the match progresses. It had block argument
detection - get the blocks in an ifTrue:ifFalse: and similar. It
supported drag-drop and new completion types.

Then he demoed. CTL + SPACE brought up an iconicised list of classes
and methods, with (Sub)Application subclasses sorted to the end of the
class list. You can turn CodeAssist on or off, or tweak it. You have code
competion choices: 40 options sorted in various categories (e.g. the ‘basic’
category contains choices with default settings that they imply are standard
for all IDEs in the market: does CTl + SPACE bring up code completion,
whether to append or replace the existing filter when you type, whether to
autocomplete by ‘enter’ or ‘tab’ or what, whether the CamelCase-match
policy is very lenient or stricter, etc. Tooltips appear to tell you what an
option means

Other, less common-to-all-IDEs options are the colours of the background
and foreground. The colour of what you have matched is highlighted
distinctly from rest of what you’ve matched, so you can type ‘ord’ and see
‘Ord’ highlighted differently in a highlighted ‘OrderedCollection’ that you
have matched. This can be done by different colours, different fonts or
whatever the user likes best to show.

The prefix match can be case sensitive or not. The CamelCase policy can
be very strict (as it is in NetBeans or Eclipse), i.e. you must tell the code
completer where the camel case letters are so every string must have R and
W and S to match ReadWriteStream. If you have chosen to the highlight
distint match regions option then the R W and S will be highlighted within
ReadWriteStream.

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 25
Seth had seen a different algorithm in IntelliJ. They do it with Java’s
regular expression engine but VASmalltalk does it faster with their specific
regex engine.

He set the CamelCase option to very lenient. Now ReadWriteStream is
found by ‘rws’. He apply the same CamelCase-matching algorithm to
methods: add:after:index: can have the after-colon letters be matched
as if caps, so ‘aai’ finds the method. For OrderedCollection new it
does a class hierarchy sort and just shows you what OrderedCollection
can understand. Hot keys can switch between alphabetic order and class’
methods, then superclass’ methods. All the hotkeys are around your right
hand,. There are hotkeys to drop Object from the list, get rid of private, etc.
default set in options and the hotkeys just let you escape from your defaults
for a particular search.

Advanced options. You can open the popup without selecting the first
element; this is for people who accidentally open it and hit enter or tab
before they realise. You can make directional keys close the popup.

GemStone/S Update, Monty Williams, GemStone
Monty was one of the founders of GemStone back in 1982.

GemStoneS/32 is still used a lot in the financial sector (showed slide of
huge trading floor). The 6.6.2 release, was made in February of this year,
backporting some stuff from 3.0: better GC, backup and restore from NFS
filesystems. End-of-life for the 32 bit stream is planned for October 2012.
This means there will be no more major releases and no new product sales.
Support for existing customers will go on until end-2015; no maintenance
contracts will run longer than that.

GemStoneS/64 version 2.4.5.1 is the latest 2.4 release and a 2.4.5.2 is being
worked on, but all major work is now in the 3.0 stream (showed slide of
shipping activity, “These guys use 3.0”).

In 3.0, a method is converted to native bytecode the first time you call it.
The foreign function interface was presented at a past ESUG.

3.1 was released in July, and 3.1.0.1 was released two days ago. It has mid-
level shared caches between the stone cache and the remote Shared Page
Caches. These prevent redlining your network when 500 machines cluster
to one. He showed the standard star config of local machines with local
SPCs: you look in the remote SPC, then in the SPC on the stone central
machine, and if what you seek is not there then you look on disk. The mid-
level caches introduce another layer of hierarchy: groups of remote
machines are clustered to the mid-level SPC machine which, if it too does
not have the page, then asks the stone.

System mideLevelCacheConnect: hostName.

26 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
External password validation was asked for by many customers and is now
there. LDAP can be used, e.g. to manage the situation when GemStone ID
is ‘norm’ and LDAP ID is ‘norm.green’.

(AllUsers userWithId: ‘norm’)
enableLDAPAuthenticationWithAlias: ‘norm.green’

In 3.1, many operations that were done in a single thread are now multi-
threaded with native OS threads. How aggressively this is done is
controlled by 2 parameters: the number of threads you may use and the
CPU % across-all-cores threshold (the thread will sleep if it is exceeded).

ProfMonitor can now sample down to 1 microsecond. Monticello support
is now built in - no need to install it. The old GemStone error handling is
deprecated and ANSI is the norm. More selectors are inlined: ifNil:,
ifNil:ifNotNil:, etc. You can now add instance variables on the fly,
and without requiring instance migration.

There are some Smalltalk syntax changes: for example, the array literal
syntax changed from #{1, 2, 3} to {1 . 2 . 3}.

Segment has been renamed GsObjectSecurityPolicy because the old name
so routinely confused users. They have wanted to change it for years and
have finally done so.

LargeInteger replaces LargePositiveInteger and LargeNegativeInteger.
ScaledDecimal is renamed FixedPoint in 3.0 and its literal notation is now
ANSI compliant.

There is a new class/metaclass hierarchy, inspired by Maglev, where the
class Module appears in the Behavior, Class, MetaClass hierarchy.

They’ve made performance improvements. The old Gem / Stone locking
and serialising of request response has been replaced by an atomic bit, so
communication is no longer serialised. Session priority values have been
added to ensure this loss of sequentiality does not mess up running
important stuff before garbage collection, etc.

In 2.x all hash table row access were handled in a spin lock. Thus if three
Gems wanted page 6, the second took twice as long and the third three
times as long. Now all three can lookup in parallel.

Tranlogs are written to disk so work can be recovered, and can be a
bottleneck - transaction not complete till written to disk. They replaced
POSIX (buggy and slow) with their own code. This improved index
auditing and commit times.

(Monty’s next “where we are used” slide was an offshore oil platform - a
well in the North Sea - as they trade all the London crude.)

GemStone 3.1 has hot-standby databases. They used to have people
copying tranlogs every 15 minutes and restarting quickly in case of

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 27
problem on main, but now the tranlog is replayed in real time.

It also has Locale-specific collation. They used the open-source
International Component for Unicode libraries (written by IBM). It also
has secure remote procedure calls for passwords.

Backup and restore is one of the things that have been multi-threaded. The
performance improvement is an order of magnitude. Symbols are now
garbage collected. Under low freespace conditions you can defer reclaim.

3.1 has IPv6 support, and IPv4-mapped IPv6 (and IPv4, of course :-)). You
need to be aware whether your linux system is configured to support IPv6.

The 3.2 release will have thread-safe GC, optimised to run on VMWare
virtualised machines.

MagLev status: MagLev has seduced some Rubyists into Smalltalk.
VMWare focussed them elsewhere for a year but now MagLev is being
done on 3.x (Monty is just finishing it now) and the Hasso-Plattner institute
are partnering with them to do various improvements. If you just want
Smalltalk, the MagLev VM will run Smalltalk.

Monty’s last slide was of the first sale of GemStone to Stanley Su, showing
Monty and Alan Otis (another founder of GemStone). Monty has been
doing work like this for 42 years and next year, his birthday present is to
travel a bit and do stuff. He’s worked at GemStone for 31 years and has
known everyone. VMWare is an excellent, well-run company, and his only
regret is that for 31 years he’s known everyone in the smallish GemStone
company whereas you can’t know everyone in a 13,000-strong company.
He will likely come back to create a start-up company of 100 people.

Then Martin showed a video from the March STIC Biloxi conference, done
as a lightening talk at the Bau Rivage casino on the gulf of Mexico. The
talk was about Subnormal Floating Point Numbers: a six-bit floating point
number with a sign bit and a fractional bit.

More and more complex equations express how the bits become the
number. He restricted to positive floats which was simpler. He zoomed into
number from 0 to 1 and got stuck at 1/8. Space them by 1/16ths.

Then he examined 64bit floating point numbers. Look at 1 divided by some
huge number. He looked for zero on this scale, doubling distance each time.
The pictures went out of the hotel and out of town and after a while we left
earth. We passed the moon, passed venus, passed mercury, we passed the
sun, reached mars on the far side and then saturn and then uranus and then
neptune. Well outside the solar system, 8 times past the orbit of neptune,
we found zero. So the gap between zero and a small number is in a sense
huge, and remember: mind the gap!

Q. You presented a lot; how many people did that? There are 14 of us in the
team counting Norm, who spends as little time as possible being a manager

28 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
and as much as he can being a programmer.

Smalltalk and Java Interoperability, Claus Gittinger, Jan Kurs, Jan
Vrany, Marcel Hlopko
Why bother to interoperate? They can reuse Java libraries: many are bad
but some are good. They can use them from Smalltalk even if they have to
endure writing a little Java. Being able to offer seamless integration is a
selling point. For example, Jan Kurs did some XML in Smalltalk, then was
asked to do XSLT transforms. A Java program for SAXON already exists.
This is an example of the general case: a solution may already exist in Java.

How to interoperate?

• You can serialize between Java and Smalltalk; the language boundary
is a bottleneck.

• Another approach is to have a Smalltalk VM that emulates Java at the
image level; problem: slow.

• A third way is to integrate Java support into the VM. That is what they
did in StX:java. Of course, Java and Smalltalk differ.

Selectors in Java have types, not in Smalltalk.

JAVA java lang system out printLn: 2012.
JAVA java lang system out printLn: ‘Hello’.

They create special dynamic proxy methods on demand. Their system
finds the best type-match from the Java methods to serve the Smalltalk
method: in this case printLn-*proxy* finds the appropriate Java printLn(..).

They have simple transformations to map String to Java.lang.String and
likewise for Dictionary. These cause performance, identity and state
synchronisation issues; they have ideas of how to improve.

How many monitors are entered if you evaluate 3+4 in Groovy (a simple
Java runner)? [Niall-boaster-Ross: I’m the one who guessed right - 2000+]
It is possible to emulate monitors with Semaphores; there’s just a lot of it.

Exceptions in Java are not proceedable, and the finally handler is a only
a syntactic entity. Suppose method smalltalk3 with ensure block calls
smalltalk2 with ensure block, which calls javaMethod with finally
handler, which calls smalltalk1 with ensure block, which raises an
exception. Smalltalk wants to put all handlers on the stack but finally is
not an object you can put on the stack. We must execute finally when
we meet it but now we’ve lost an ensure block - who will take
responsibility for that.

They solve this by putting the exception in a wrapper, then put the program
counter to the start of the finally, thus execute the finally, then see
whether the finally took the exception and resume walking up the method
chain.

Q. To do this, I must reimplement the Java VM? Yes; they reimplemented
in C. Yes, that means you lose specific VM work of Oracle, etc.

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 29
Martin pointed out that you can make a Java VM modified to use a
Smalltalk VM’s object space; GemStone did that a long time ago. Jan
Vrany remarked that VisualAge for Java translated Java bytecode into
Smalltalk bytecode. The two bytecode sets differ so much that runtime
performance was poor, though it was usable for development.

Q(David Chisnall) Java is a patent minefield. Have you licensed stuff? No,
the non-free they do not get or use.

StX:libjava, Jan Vrany
They have a Java VM built into their Smalltalk environment. Their
approach differs from all prior attempts that he knows of, such as
JavaConnect that runs JVM in parallel and communicates, or the
approaches that translate Java bytecode into Smalltalk bytecode. Their VM
can run ST bytecode and Java bytecode and can JIT java code.

He opened a workspace with Java code:

hello := new stx.libjava.examples.HelloWorld();
for {int i = 0; ...}
...

He opened a browser and showed the source code of the HelloWorld Java
class. Next he opened a Smalltalk workspace and demoed running Java
from Smalltalk.

JAVA stx libjava examples HelloWorld main:
#(‘Smalltalk’);

JAVA stx libjava examples HelloWorld new.
0 to: 9 do: ...

Q(Martin) marshalling? No. The Java objects are in the same object space,
can be inspected with Smalltalk inspectors, etc. Passing a Java object to
Smalltalk code has no more cost than passing a Smalltalk object to
Smalltalk code.

He opened an example XML app - a list of CDs with xml info. SAXON is
a program to handle XML but is far to large to port or reimplement. He
showed the Smalltalk code that drives SAXON - a transliteration of driving
the (wordy) Java API. Yesterday, they explained how to catch Java
exceptions in Smalltalk. Today, he demoed the transform working,
showing the CD data, and then corrupted the filename to see exception
handling working. The debugger opened normally.

Nowadays, the web is the future (say many people, not Jan, but let’s look
at the web anyway). He showed running a web browser from their local
machine running Tomcat; you just load it and run. He showed us the system
properties, then changed the Java vendor to ‘ESUG Fans’ by Smalltalk
invocation, then looked again at the web page and there was the change. He
showed a Java servlet that provides a Smalltalk workspace: enter Smalltalk
and evaluate it and the Java code on the server evaluates the Smalltalk
code. He then send bad code to bring up a debugger showing a stack of
mingled Smalltalk and Java code.

30 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
Current status: he can run most of the non-UI Java classes. You can browse
and debug the code but you cannot accept Java code in a browser yet. This
is not production-ready yet but is progressing. There are more than 1000
native methods and you really need to implement them all to run all Java
code: they do not have the resources to do them all, especially for the UI
ones that are tricky, undocumented and sometimes ridiculous in their
behaviour. The performance is not dire but not yet good enough. Logging
(ubiquitous in Java) also slows things. They can run the Eclipse tools
without UI: parser, refactoring, etc. A real incremental environment for
Java - i.e. accept in browser - will take longer.

Get this from https://swing.fot.cvut.cz/projects/stx-libjava. Blame Jan, not
eXcept, if you find problems.

Q(Carsten) Saw similar talk from Claus years ago - was the project halted
or did Java VM changes delay it? Claus did raw first step version for 1.0
but in 2010 he saw Java changes had broken it circa 1.1. They’ve rewritten
reflection, and changed the class loader and lots of stuff. Now it runs in 1.6.
Fixing needed much rewrite of code in the virtual machine, but the basic
architecture is unchanged. Logging and finally blocks were the hard part.
Claus did a cool job so they had a great starting point.

Q(Leandro) Why does your achitecture have a JIT and two interpreters,
one Smalltalk, one Java? Many VMs have both: some code is rarely called
or complex or otherwise not worth while to JIT. An interpreter is easy so
they started there to make it work. Then they wrote the JIT; they could not
have written a JIT at first. Things like finally blocks are hard to JIT - or
rather, you’d have to switch back to unjitted. Thus the JIT complication is
reduced.

Q(Leando) How does an object knows it is Smalltalk or Java ? From its
class, noting that the top Java class is a subclass of Behavior.

Q(Christian) Oracle owns Java. Does that affect you? Jan has not seen a
black car in front of his door yet. Oracle owns a patent on how to make
logging fast, so they used another approach they found in an IBM paper.
(IBM probably wrote the paper for the same reason - to avoid the patent.)

Q(Martin) A JVM must pass a set of tests to be called JVM; are there any
technical, as opposed to resource, obstacles to your achieving that? Not that
he knows, but he was unable to get the technology compatibility kit that
does those tests. Deep in Java, there are methods saying thread wake if this
method is called or if some other thing happens, or randomly.

Amber, Nicholas Petton
He showed the Wat video with some Ruby oddities and many Javascript
oddities, including that

array == ! array;
",,," = new Array(4);
[[3]] == 3;

all return true, and ending with the ‘NaNaNa...NaNa batman’ return from

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 31
an expression. So obviously he’d rather work in Smalltalk, but he also
wants to work in the web browser. Thus he created Amber.

Amber is written in itself, compiles to Javscript, is hosted on GitHub and
has followers. He showed the Seaside counter example. He opened the
Amber IDE and showed the renderOn: Seaside code (he was sending
counter asString as he’s already inside the browser). He also just
updates the counter contents when the button is pressed. The class browser
has the usual basic functions: search for implementors/senders, class,
references, and so on, with shortcuts to inspect. doIt, printIt, etc. More
functions will be added. As well as being a cool Smalltalk environment, it
improves the workflow when writing client-side applications.

Next he showed Javascript. His slide had code to change the background
and he just clicked the doIt button to implement it. His next slide was to
move a widget and (after the usual demo hiccough - he reloaded his code)
it moved, rotating the Amber logo. He showed a demo written entirely in
Smalltalk that used the Canvas API to show patterns of rectangles that
appeared and vanished in the slide. Amber uses proxies to talk to Javascript
objects so if you know the API you can address it using only Smalltalk.

It wuld be too much work to bind everything between Smalltalk and
Javascript, so a String in Amber is a String in Javascript and for many other
things where it makes sense to map one-to-one.

He also lets Javascript call methods on Smalltalk objects, using
_yourself for yourself and similar. He sent the document message to
the window object to demo this, then inspected the window object, which
was a javascript object but you get the Smalltalk inspector showing it. Thus
you can interact with Javascript for free.

Javascript engines are not just in the browser; they are also in phones and
everywhere. It runs on Node.js, which is free and growing fast. It also runs
on Gnome shell and KDE - Amber runs on his kindle. The files you need
in bin are ‘amber’ (does fully functional REPL) and ‘amberc’ (compiles
Pharo almost without exception to Javascript).

He showed the toy rabbit (Karrotz) example with a Javascript API so
drivable from Amber. He made the rabbit say “Hello ESUG 2012”, wiggle
its ears, etc.

The debugger in 0.9.1 (latest version) does not yet have stepping (will have
it soon). He demoed reaching a halt, inspecting objects, removing the halt
and executing code from inspector.

Q. How easy is it to get at SVG objects and to trap events on those objects?
Anything you can see in Javascript you can see in Amber. A callback is a
block closure in Amber and can be done; it is fully transparent.

Q. Calling Javascript methods with multiple or variable arguments? They
tried passing an array but that was ugly so they reused what GnuSmalltalk

32 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
does for Java inlining: you add extra keywords when you want extra
arguments. If css: is the method then you can write css:color: or just
css:value: because what the second argument keyword is does not
matter, only that a second keyword is there.

Q(Martin) non-local return but not exceptions? Yes he has non-local return
and exceptions but he cannot resume an exception if his compiler cannot
inline it, which is so in various cases.

Q(Martin) what is your intent in Amber (obviously, it will appeal to a
Smalltalker that does not want to learn Javascript)? You have to know
Javscript APIs. It is much easier and better tooled in Smalltalk. He sees few
people coming from the Javascript world but quite a few from Ruby or
from Dart and similar (most in the Amber newsgroup are not Smalltalkers).

Q(Georg) Reflection on Javascript classes? He has no plans to improve
Javascript. Smalltalk reflection is important to him.

Q(Georg) Dart? He likes Dart’s compiler to Javascript and he learned a lot
from looking at its compiler. He sees the language as a failure: hyped but
too close to what we’ve seen. It seems to have nothing to offer. He doesn’t
hate it but he doesn’t like it that much.

Q. Can you use libraries like Zink? Yes, load library, call it from Smalltalk.
(Can be loaded incrementally from server? Yes.)

This presentation of Amber was made in Amber.

Frameworks and Tools
Advanced Visualisations to Tame Wild Program Execution, Vanessa
Pena, Alexandre Bergel, Juan Pablo Sandoval, Pablo Estefo
They’ve been working for three years on how to solve hard performance
problems.

Kai is an execution profiler, unlike traditional profilers which focussed on
the execution stack, which did not help answering “is there a slow method
being called too often?” Kai offers a visual comparison of number of
executions and time of method. He showed a typical performance-
annotated stack of a standard tool, and then a Kai representation.

The height is the time spent, the width is the number of calls and the color
is the number of objects on which the method was called. In another graph,
colour shows whether a side effect has occured, i.e. the state of the receiver
changed. This can help in deciding whether caching would help.

Vanessa started (in VisualWorks - there is also a Pharo port and an Amber
one). She chose what to profile (expressed in Smalltalk code: templates and
specific choices are offered) and got her visualisation. The left of the view
showed a textual legend of the data. She looked at various methods that
took a long time or were executed often or were applied to many objects.

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 33
Q(Stephane) Call graph? Obtained by popup menu. However there are
often many, many classes so the per-class view is a good place to start.

Popups let her get incoming invocations, outgoing invocations or just see
the code. You can also jump instantly to the method or class in an RB. You
can also get the standard stack-oriented view at the method. She also went
from a class to the overall graph.

Next, Alexandre presented a small scenario applying Kai to the Mondrian
utility. The method bounds appeared very expensive. After looking where
it was called, it appeared local caching would work and indeed it did. This
gave a 43% speed up. He also looked at some of the thick yellow methods.

Q(Christian) Same profile? They execute twice: once to get standard
performance analysis info, then again for e.g. side effects data. If they tried
to collect both kinds of informatin at the same time, the overhead of the
second run’s collection would corrupt the first run’s time measurements.

Hapao does test coverage. Traditional coverage tools have a binary view.
But the question you often want to answer is, “Which method should I test
next to increase coverage most?” He showed a diagram. The lines inside
classes are self calls. The height is the complexity (the amount of control
structure, got from anaysing the AST and applying the McCabe metric).
The other visual measures (width, colour) are as above.

Vanessa opened the tool, selected items and asked for coverage. Again, the
left side of the pane showed text on the coverage values and a legend on
what the visualised measures meant. The rest shows unreached methods in
red and test methods (i.e. roots of the coverage run) in green. Height of a
method shows its complexity. The right-click menu lets you look at classes
or methods, or popup with further views in that context. For example, she
can see which tests reached that method (or that class, showing which
specific methods). Next Alexandre showed the large scale coverage graphs
of Moose in two versions.

Roassal, following on from Mondrian, is an interactive visualisation
engine. A short Smalltalk script lets you define what you view, assigning
code and performance metrics to shape, size and colour of your views.

In the Pharo version, they demoed typing code in the Roassal Easel
Transcript and getting immediate visual results in the display pane. All the
OrderedCollection subclasses were displayed, at first as a simple line of
nameless boxes, and then he began displaying the hierarchy relationship,
making width be the number of instVars and height the amount of code.

Q(Stephane) Roassal improvements over Mondrian? The cleaner central
core makes it easier to extend. He will show examples you cannot do in
Mondrian. He mapped classes to coloured shapes and showed zooming in
and out, and dragging. Roassal is also faster. Alexandre’s goal is to be able
to display 10 million nodes two years from now.

34 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
He showed visualising the NY fire department phone call incidents data.
Height is time spent to react to call, width is time spent on the call. Colour
represents whether there was an actual fire and how serious it was.

Roassal can display with Cairo on both VisualWorks and Pharo (remember
to load the Cairo parcel, not prerequed, in VW), with thanks to Chris for
VisualWorks and Igor for Pharo. They have ported Roassal to Amber and
will demo that this afternoon.

They are working on multi-diminsional profiling: showing the changes
between two runs. He showed an example: something in Pharo 2.0 was
slower because in the XML parsing the atEnd method was slower. Pablo
is working on seeing how to refactor tests to improve coverage: he showed
a browser that displayed panes of tests along with the central info.

Alexandre thanked ESUG, Chris T, Cincom and all who use and give
feedback on these tools.

Q(Carsten) In the comparison of two versions, what did the height and
width mean? Alexandre returned to the graph and showed one method that
was light red (a bit slower) and another that was very red (much slower).
Width shows the change in execution times. The graph also shows which
methods had code changes between the versions.

Smalltalk in the Cloud, James Foster
CloudFoundry is an open framework from VMWare: “the platform as a
service”.

Self-hosting means you are responsible for the building, the power, the air
conditioning, the hardware and the software. A data centre gets rid of the
first few. Renting space from Amazon on a virtual machine lets you install
your own operating system and manage just that and the application
software. CloudFoundry is an example of providing the platform as a
service: someone else provides the hardware and the operating system; all
you need to provide is your software. (The last stage of outsourcing your
activities would be Sales Force or similar: “software as a service”.)

You choose your cloud, push your app and bind services. If later, success
comes, you upgrade from one instance to a hundred. You can have a public
cloud or a private cloud, or a micro cloud which just runs on your machine.

CloudFoundry.COM is the infrastructure that VMWare provides.
MicroCloud can be downloaded to your own machine. CloudFoundry.org
is an open-source provider.

The Browser communicates (via routers) with applications in the cloud.
Underneath, the infrastructure provides a pool that manages applications,
cloud controllers, a load-balancer, etc. A VNC client lets developers talk to
their apps. Browser requests come in through the load-balancer and get
handled by a web app running in a cloud.

vmc instances MyApp 3

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 35
will update you to 3 instances. When browsers address MyApp, the
incoming requests will be allocated to one or other of them by
CloudFoundry’s load-balancer.

He then showed the trivial Ruby app that CloudFoundry offer as their
default example. As good practice, you try the app locally

ruby env.rb

then execute

vmc target

to set the context for the following command(s). It returns James’
registered domain: api.vcap.jfoster which he pinged to show it was
127.0.0.1 on his laptop. He showed that VMWare fusion was running
CloudFoundry on his laptop. He did

vmc push ruby-env

and replied to the how many, what services, etc., queries and then was able
to connect from his local browser on his laptop. Then he retargetted away
from his micro-cloud to a public cloud

vnc target api.smalltalkcon.org
vnc push ruby-env

and I (Niall) pointed my browser at http://ruby-env.smalltalkcon.org/ and
saw the same app. Now it is in a public cloud, not just in his micro cloud.

That was Ruby but we want Smalltalk. How is Smalltalk different; let me
count the ways. Smalltalk is a monolithic image with full application and
framework instead of being text files and app code with external libraries
and frameworks that can be pre-loaded on the server.

But in fact it is not that different. Code can exist outside the image as
packages and file-ins. There are files that can be under a root directory.
CloudFoundry has a process “staging” which is under our control: it
determines the actions taken before launching. In our staging, we must
launch Smalltalk, load the code, save the image and carry on.

James showed a Pharo application (this will work with any Smalltalk
dialect) with files app/aida.st, Aida.changes, Aida.image, PharoDebug.log,
PharoV10.sources, etc. In our Smalltalk app, we must say what port to
listen to. An environment variable provided by the cloud tells us the port
we have been given by the framework.

portString := SmalltalkImage getSystemVariable: 3.

(N.B., the system will not let you compile a method unless you define who
the developer is, for its timestamp system, in a line at the start of the file.)
He registered Aida in the VMC’s list of supported frameworks, then
demoed by cd’ing to an /aida directory and doing

vmc push aida

36 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
He worked through the dialogs and then we connected to
http://aida.smalltalkcon.org/ and received an Aida start page with app-
specific last line ‘Listening to ESUG 2012 on port: 37082’. Next, he
registered MySQLBalanceApp and ImageBalanceApp and did

vmc push balance

When done, http://balance.smalltalkcon.org/MySqlBalance showed the
login page for the application. (He gave us the password and we could
login.)

Tim then described how, at the Hasso-Platner Institute, second year
students had to write Seaside apps and (aside from “I don’t have my
beloved Mac keybindings”) they disliked the work of configuring apache
to make their app visible. In February, HPI set up a micro cloud; 3 student
groups used it. They found it very easy to use. Next term, all students will
be told to use it. A very tiny .mcz package helps generate a droplet for
pushing to vmc.

Q(Georg) pricing? CloudFoundry is open source. You can fork it on
GitHub, take James’ Aida branch, install and run it. You are not locked in.

Q(Nick) GemStone? There is a package with a GemStone database and
topaz API.

Q(Stephane) Infrastructure - what monitoring tools do they use to monitor
these farms of clouds? These tools are provided by a separate part of
VMWare. Every month James gets an email about the latest new tool or
version. Various people provide clouds and various (other) people provide
tools to monitor and manage them. VMWare are keeping these tools more
propriatory. If you want to run a data centre, VMWare would be delighted
to have you as a customer.

Petit Parser Tutorial, Guillame Leveque
Guillame programmed for 6 months in Java in J2EE. After that experience,
he was very happy to discover Smalltalk. He has been programming in
Smalltalk since January.

The tutorial example was to parse PHP (using a grammar obtained from the
Symphony PHP framework), using standard XP test-driven development.
He gave us a test, we worked on answers, then he showed as an example
answer. Test

PHPIslandGrammarTest>>testAccessPrivate
self parse: ’private’ rule: #accessModifier

is passed by

accessModifier
^’public’ asParser
/ ’private’ asParser
/ ’protected’ asParser

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 37
(put the most commonly expected value first, the least common last). We
then wrote a test for declarations. The first character of a name cannot be a
number, but it can be an underscore.

PHPIslandGrammarTest>>testDeclareName
self parse: ’Esug2012’ rule: #declareName.
self parse: ’_Esug2012’ rule: #declareName.
self fail: ’2012Esug’ rule: #declareName.

(star means BNF * i.e. 0 or more of the productions). This is passed by

declareName
^(#letter asParser / $_ asParser)
,(#word asParser / $_ asParser) star

Next we looked at class declarations.

PHPIslandGrammarTest>>testClassDeclaration
self
parse: ’class DemoExtension’
rule: #classDeclaration.

which is passed by

classDeclaration
^’class’ asParser
, #blank as Parser plus
, declarationName

He used an instance variable ‘declarationName’, not a method call of
self declarationName, to ensure that any accidental cycles would not
matter. If he had called self declarationName and he had a cycle in
the rules at any point, the test would run forever.

He used pastebin.com to make some PHP class declarations available to
the group, thus invited us to write the call in the test

PHPIslandGrammarTest>>testCompleteClass
self parse: (self phpClass) rule: #completeClass.

solved by

completeClass
^#blank star,
#blank star, classDeclaration,
#blank star, classDeclaration negate star

where we must then parse the negated stuff in more detail (could use not
but negate consumes). At the moment, this gets us the classes parsed but
except for the name, we do not yet differentiate contents. (That ended the
allocated time for the tutorial.)

Real-World Seaside Applications, Nick Ager
Nick has built real deployed apps and will share his experience.

38 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
There are many wysiwyg editors that can easily be included in your page
with a javascript call. However there are bad guys out there. If you allow
raw HTML upload, you risk having people upload nasty javascript that will
redirect. There is a Yahoo UI editor that is configurable (choose which
buttons to include or omit). You could do some parsing in the browser - it
understands javascript and has a good dom - and whitelist only such
javascript expressions as you can understand. However, even easier is

self configuration allowWikiTextEditing.

Nick’s editor converts the HTML into Pier’s wiki text and only the output
from that is being passed to the image. You are therefore safe, since Pier
WikiText cannot understand Javascript. This was developed for Pier but
will work in any Seaside component as he only uses a renderer to convert
it to HTML again. General rule: once you store it outside HTML, you can
manipulate it and are safer.

Uploading files: he showed an example from the Seaside book: “A
beautiful example of how elegant Seaside is, but the example is not real-
world since the file is going into the image before being written, so the
image balloons as the upload happens. In the real world, apache or
whatever sniffs for file uploads and puts them in the file system, rewriting
headers to tell the system where the files were put. Nick achieves this with
an

html hiddenInput ...

call. File downloading works the same. Your front-end server is good at
serving files, so you want to configure it to serve css, jpeg, etc. for you.
Usually you write the files to a known location and have the server point at
that.

Your site’s appearance must impress. Twitter bootstrap is a collection of css
for buttons, tabs, drop-downs and so on. There are good examples of
people using this (which, because his internet connection had just gone
down, he could not show). He showed his Pier site, which uses these.

WAFileMetadataLibrary used to require that all files be in the same
directory, which is not how modern libraries like Twitter bootstrap work -
they have substructure. Now, there is a subclass that can handle that; the
call you need is recursivelyAddAllFilesIn:, and twitter bootstrap
input widget features can be exploited via twbsPlaceHolderText:.

To harden for deployment, make your server know only about the root class
of the deployed app, not any other apps you have have installed. Flushing
the monticello caches before uploading makes sense.

Alas, seasidehosting.st does not work with anything later than Pharo 1.2. It
was great for testing although not of course usable for any kind of
production. When choosing your real data server, be aware that having low
latency is important. Living in London, Nick was happy with linode (they
have a data centre there) and Amazon has also been good for him. (Arocu
have builds for lots of things; it would be good if it could also have a

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 39
Seaside build or two - anyone want to?)

Q. Amazon? At first it seemed great, but if you are manually configuring
it then it soon goes out of date, plus it’s an image - what has been done to
it? Norbert wrote a config tool to address this.

Nick also gave a good talk on JQuery, which sadly I missed - see his slides
After that talk, Karsten Kuche applied Nick’s approach to SeaBreeze.

GIT and Metacello, Dale Henrichs, VMWare
Storing source files is not enough; you must store package structure. Otto
told Dale he had a utility for that, and Dale took note.

There is a FileTree directory structure: package root has class subroots with
method sub-sub-roots. You also have e.g. Object.extension roots for
extensions (Dale had to jump real high to show it on his high-projected
slide :-)). There are other roots for specifics, e.g. properties.json.

Git is a distributed version control system for source code. Distributed
repositories can be used locally and then easily remerged into the central
repository. Why Git? Vincent Driessen in 2010 wrote an answer: “It really
changed the way developers think about merging and branching. It used to
be scary but with Git it was easy for 00s of people around the world to
contribute.” Vincent showed a successful model for Git merging. (Useful
slide) Master branch, hotfix branch, release branch (for preparing releases
and merging in bugfixes), development branch (main work) and feature
branches (for specific major extras).

Using Git makes it easy to use GitHub. You can use Mercurial or SVN or
whatever with GitHub, but Git and GitHub are a natural pairing. GitHub
has a simpler flow than Vincent’s all-cases diagram. The development and
master branches are the same, and you have feature branches. You have no
hotfix or release branch. The master branch is always deployed. You used
named branches off of master for all work, then a PULL request submits
your work to master: a code review decides whether it goes in or not.

Dale showed the web page list of a simple PULL request, followed by
review and OK and commit. Then he showed more complex one where
review raised comments, well-displayed against the code diffs. Interactive
code reviewed between people 8 hours apart can work well in this process.

Every commit to GitHub runs a build which runs test. Recently, they upped
this so every PULL request gets a build. Dale showed where he submitted
a PULL and the build found a bug (LatinMirror has been withdrawn).

Q(Stephane) Does 3-way merge? Yes. Green button if 3-way merge has no
conflicts.

Q(Stephane) Jenkins bridge? Probably.

It runs tests in parallel on multiple builds. Dale showed a list of tests where

40 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
he passed in Pharo 1.4, failed in Pharo 1.3. This is done by ‘travis’ (not
Travis Griggs but a system bot called ‘travisbot’).

Q(Stephane) Where are the smalltalk machines running? Serge Stinkwitch
created the Smalltalk VM and Dale took it. The test downloads this VM
and runs. This piggybacks on the Erlang engine, Dale thinks.

You create a file, based on a template Dale will give you. Simple Smalltalk
code creates the Metacello repository, invokes tests.

Git has a million users and 112 people who work at GitHub. We can
leverage this.

Cypress is a cross-Smalltalk-dialect package structure. How many share
code between Smalltalk dialects? (many hands). How many like to do it?
(no hands). 5 years ago Dale thought Monticello could be the common
cross-dialect approach but there are reasons why not: it has too many
tendrils. Cypress just says: have a directory structure.

Q(Stephane) external resources? Yes, Git includes any file so we can add
that (and define it cross-dialect if we can).

FileTree is a specific implementation of the Cypress spec. It includes
Monticello integration with Git. FileTree is just a repository type in
Monticello terms.

https://github.com/CampSmalltalk/Cypress contains stuff incuding the
picture of the napkin where he and Travis (Griggs, not the bot) defined
Cypress. Cypress implementations exist for a range of dialects including
Amber, Cuis, GemStone, Pharo, Squeak and VW. Travis Griggs did a VW
version that talks to Git, called STIG, which Martin is now stewarding.

github://user/project/[:<SHA>][/ <path>]

A single baseline: method in the BaselineOf class, plus Git, does a lot
of what Metacello used to do; using Git makes Metacello much simpler.

Q(Stephane) make string user=dale, project=... so others can use
generically? The string is specific to GitHub saying that’s where I want it.
Having done this work in last 6 months to make himself happy, he is now
ready to discuss how to make everyone happy. He’s created an API to
replace the standard load expression.

The Metacello stuff will be in Pharo 2.0 and Squeak 4.4. The preview is
MetacelloPreview 1.0-beta.32.2, looking for a few volunteers to use it and
suffer in a good cause (of making it better). Dale suffered a lot learning Git
but google is his friend - others had already met his problems.

FsGit is in-image support for Git and being worked on by a couple of guys.
Please come to the workshops and ask ‘stupid’ questions - every stupid
question means there is something wrong with the documentation.

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 41
Q. Merging Monticello meta-data? You cannot merge meta-data. This has
been left to avoid problems.

Q(Johan Brichau) Can we use Monticello for branching (people are used
to it) and GitHub for merging? Stefan Eggermont argued you need to keep
your branches small, so maybe that would not work too well.

The Metacello Doctor is IN, Dale Heinrichs, GemStone
I only caught part of Dale’s workshop. For more info, see
http://www.slideshare.net/esug/of-metacello-git-scripting-and-things.

1) Dale looked at the “No baseline pragma” error. Start by browsing
baseline101: spec. GitHub does not clone the repository, so you can’t
checkin: you load from GitHub.

Metacello new
repository:
‘github://delware/StoryBoard:master/packages’;

baseline: ‘StoryBoard’;
load.

You are pointing at GitHub and need to switch to local by doing a get.

Metacello new
repository: ‘’;
baseline: ‘StoryBoard’;
get.

i.e. get instead of load.

2) Next, Tim had a feature request. You want to add a license file to your
project and a license header “copyright <year> <name> - see licence at
<location>” in every file. Can you give it the means to apply this at some
point late in a project development? Yes, there is a what-we’re-doing line
that could be used for this. License text could be added to a repository as a
property. In GitHub you can have multiple package repositories, so you
could handle various licences.

You don’t go through the disk to GitHub, you go direct from the image.

3) The next questioner had problem with changes. Sometimes, things go
weird in Monticello: press this changes button and nothing appears
changed; press another button and everything appears changed. What is
going on? In Monticello, a package wants to compare to self or an ancestor
and if the local file system does not have an ancestor then it can get
confused. Dale guessed that the questioner had been shown the dialog
‘Dirty - Proceed or Load?’ and had chosen ‘Proceed’. This relates to a
known issue where “There’s a mountain to move” but it will be fixed.
(Also, in Squeak, some patches have broken common behaviour, e.g.
readAllFiles gives strings or objects depending on the patch level.)

4) Amber lives in the world between Smalltalk and Javascript so has a
choice - use some Javascript stuff or not? Metacello was originally doing
some of what GitHub now can do for us. Jan Vrany is porting Metacello to

42 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
StX, not to use Monticello but to use Metacello to manage dependencies
and etc. in St/X streams.

Advanced Seaside, Phillippe Marschall
This talk is about the Seaside-Core component, which could be called
Seaside meta (in 3.x, Seaside was split into various components: Core,
JQuery, Javascript, etc.). This component is about the basic request
architecture. The Seaside-REST component is build upon the Seaside-Core
so you can just load it for RESTful use. The core gives you objects, not
strings. When correctly used, the overhead of using it versus programming
the web server directly is negligible.

WARequestHandler gets a request and receives a response. They can
handle multiple requests in parallel so do not put request-specific state in a
subclass of that class (or use semaphores, but that complicates things).
Request handlers can be chained: e.g. /conferences passes to /esug which
passes to /2012 which handles the request.

WARequestFilter is a wrapper of a request handler. Think method wrapper
- a WARequestFilter would do logging, security and similar things.

WASession handles continuations, properties. In Seaside 3 there is also
WARequestContext that holds the current request and current response that
you can use to get info that earlier you would have got from the session.
The WARequestContext can also give you the handler stack, i.e. the stack
of WARequestHandlers invoked before the current one. A Seaside
application is a WARequestHandler and we have to access it to read the
configuration; the need to find it is one example of why we may need to
walk the stack.

WAPathConsumer: /esug/2012/... consumes /esug/ and then consumes
/2012/ and so on. This simplifies coding by managing the consumed and
the not-yet-consumed parts of the URL.

WADispatcher: the global Seaside dispatcher takes all requests and
dispatches them.

WAServerAdapter: Seaside does not come with a web server. This class
adapts generic convenience methods to the native methods understood by
a particular server you use.

Philippe has created a joke web framework Frank (inspired by the Sinatra
framework). He showed a trivial app - one class-side register method
and an index and schedule for esug2012 - and showed it in the browser.
Loaded from GitHub, this just needed Grease, Seaside-Core and his app.

Frank implements

handleFiltered: aRequest
aRequest consumer atEnd
ifTrue: [self listing...
ifFalse: [self receive: ... “gets next on path”]

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 43
He implemented receive: as a trivial respondsTo: check and call but
never do this in a real web production framework (arbitrary code could be
invoked by users). handleSelector:context: does the perform:.

In Seaside 2 you could always do WAResponse new. In Seaside 3, the
response must be more tied to the server, e.g. if you do streaming and the
server wants to do buffer recycling. Now you must use the provided
creation methods.

Sometimes, people ask if Seaside, with all its objects, will be fast enough.
He started a basic Apache, utterly untuned, merely connected to his Seaside
image. He used Apache bench, keepAlive and 100,000 requests. He asked
us what we expected (we guessed it would finish within his talk time :-))
and then ran it. It handled 10,000 requests per second.

REST merely means pretty URLs for Web Services. Use pragmas.

index
<get>
<path: ‘index’>
‘<h1>Hello World</h1>’

or
index
<get>
<path: ‘index’>
<produces: ‘text/html’>
‘<hello>Hello World</hello>’

and you can have
index
<get>
<path: ‘{name}/_all_docs?start={start}...’>

For development, you can set shouldCacheRoutes but be sure always to
take it out again for production deployment.

WARestfulComponentFilter can be used on these e.g. to do a count.

Seaside-REST is in Pharo, Gemstone and VASmalltalk (it will be ported to
VisualWorks during the sprint after the conference).

Philippe then spoke about Seaside 3.1 stuff.

Session tracking is now its own class that you can subclass e.g. for better
cookie control. You can choose query fields only, cookies only, cookies if
supported and query fields otherwise, cookie for browser but IP for
crawler. Another other option is to use the SSL session id (but then you
must leave it alone).

The path parameter now does not have to be a hidden form parameter.

WAMain is now gone. There is a new continuation that drives the render
loop. If you used to subclass WAMain, you should now instead subclass
WASessionContinuation.

44 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
Previously, JSON was part of Javascript in their approach but now it has its
own package. There were enough subtle differences to require that.

Streaming now has on-demand flushing - no longer must you stream every
response or none at all. Continuation can flush after rendering </head>.

They did much work on HTML5, most of which is already in 3.0.x but
multiple callbacks are not there yet. Document handlers used to be stored
in the same dictionary as sessions which caused complications due to the
heterogeneity of content. Now document handlers are stored in the session
so when the session expires, so do the document handlers.

Nick Ager is now part of the core team. He’s already presented Pier 3 and
Magritte 3. They like the quality of the work he has done. Now the
walkback in VisualWorks opens at the correct point in the stack.

Does anyone know morphic well enough to make a control panel for
Seaside in Pharo 2?

He thanked the sponsers of the Seaside sprint: 2rivers, Reza Rezzavi, etc.

Q(Hans Martin-Mostner) Web sockets? Not yet. Sink and WebClient have
something - ask Sven for status.

Q(Martin Kobetic) When VisualWorks integrated streaming suppport,
Seaside was trying to write the headers; it would have been better if writing
the headers was in a separate callback? Seaside now doesn’t write headers
- there is a dictionary. Try subclassing WAResponse, as comanche does.
(Further discussion and work offline.)

Glorp, Karsten Kuche
Glorp maps between tables and objects. Karsten started working with
Glorp last year. He created a demo descriptor system.

classModelForLogItem: aClassModel
aClassModel newAttributeNamed: ...

tableForLogItem: aTable
(aTable
createFieldname: ‘id’
type: platform serial) bePrimaryKey.

aTable
createFialedNamed: ‘timetamp’
platform datetime.

...

Now we have modelled our classes and our tables, we must model the map
between them.

descriptorForlogItem:
...
aDescriptor directMapping: #timetamp ...

That demo took us 4 minutes to describe the class, the table and the
mapping for one class with four instance variables. So we’d rather have

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 45
tool support for this. The ObjectStudio mapping tool will be presented by
Dirk and Arden tomorrow. ActiveRecord was first released in
WebVelocity, taken from Ruby on Rails. ActiveRecord applies specific
rules but only works if you have control of the database (can give hints).

Ideally, why not have automatic conversion: read the database tables,
create classes and Glorp mappings between them. You then modify the
result. In an ideal scenario, your DB is already well designed to support
your desired class model. In others, you have the database, ill-designed or
old, and you will modify the mappings to a new class model.

The Glorp Mapping Creator was built by Karsten. It lets you choose
mappings for the DB schema elements. He opened its UI and created an
empty SQLite Store database in 7.9. Then he opened his tool and made
some modifications. He could have applied a rule, e.g. to strip all the TW_
prefaces. Thus he acquired a Glorp mapping. He published a package and
looked at the objects in this mapping. At present, his tool checks foreign
key constraints so causes one-one mappings and one-many mappings.

Orpheus is “one ring to rule them all” for database usage. Instead of
designing a specific schema for a specific application, Orpheus’ approach
is to have a table with single column for timestamps, a table with single
column for integers, etc. (Virtual tables can then join these to present the
more common kind of database views.). You just have to describe your
persistent classes (i.e. provide sufficient DB type info for their instvars)
and Orpheus calculates the mapping of these to the base tables.

They migrated Orpheus to Glorp. You add just a little info to the basic
descriptor system. Suppose you have a class in which a person can have
name ‘Karsten’, live in ‘Munich’ at zip 80331, etc.

aClassModel
newVirtualTable:
baseType: #TinyString
...

lets you store the TinyStrings of names like ‘Karsten’ apparently in the
virtual table of the class but actually in the real table that holds all
TinyStrings in its single column.

Glorp keeps proxies, it does not replace them. This is faster than replacing
(using become: is slow) but you must remember that == does not work. In
Glorp, proxies are bound to sessions, so you cannot compare with objects
in another session. There is no session pool.

Orpheus uses method inlining. Consider a Glorp query for person, city and
country where all persons are in Germany. You can ask

where: [:each | each country name = ‘Germany’]

but if you define

countryName
^self city country name

46 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
Glorp will not let you ask

where: [:each | each countryName = ‘Germany’]

Allowing this is in fact easy to implement (‘easy’ means it took him 2 days
thought). He also addressed query optimisation. Glorp can generate code
like

[:a | a = 2 & (false | true) | NOT(true)]

which can be simplified to

[:a | a = 2]

but although Glorp can optimise some things, it did not catch the above;
they fixed that.

What does Glorp do if you put 50 char string into varchar[20]? Glorp runs
past that just fine and only later do you find you’ve lost 30 chars; another
thing to fix.

Multithreading: one process per session but two sessions share no objects
- that is a problem.

All objects in Glorp are cached. An object in a cache will not be refreshed
just because it is becomes out of date in the database through another
process. You must explicitly refresh the cache to see if that is so.

Modifying: you register objects before changing them. If your code path
changes an object before it is registered, Glorp does not recognise it has
changed. If no later change is made after it is registered then, despite
registering it, the object, and its pre-registration change, will not be written.

(Niall: I agree with this as the default Glorp strategy but see also methods
registerAsNew:, save: and forceSaveOf: to handle special cases.)

The common approach to recording the Glorp model of your application
puts class names and table names into selectors: tableFor<Name>,
classModelFor<Name>:, descriptorFor<Name>:, . One could use
pragmas but support for this is not there at the moment. (Also these long-
prefix methods can lose a class name under the class browser’s next pane.)

Karsten closed by stressing that Glorp is superb and cool. Don’t be scared
by the things he has mentioned, just be aware of them when writing your
Glorp-using applications.

Q(Niall) We are working on providing other Glorp schema recording
patterns as alternatives to the ‘class-name in method state’ and also
providing refactorings that include changing these parts of methods.

Q(Christian) Why has running Store on Glorp made Store slow? Karsten
believes it is the session problem. The approach has been to create too
many sessions, so too often reading same object again.

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 47
Presenty, Denis Kudryashov
After the usual demo hiccough opening his presentation, Denis explained
that presenty was a way to separate business logic from presentation layer.
He sees widgets (combo box, listbox etc.) as just designer terminology.
There are many browsers but it is all the same info.

He showed some alternative browser ideas, some just to indicate what
could be done rather than recommending what to do. PtyGuide drives app,
PtyUser has domain knowledge and PtyUser + PtyGuide generates new
tasks. PtyTask has PtyTaskContext which is the context for a
PtyTaskActivationStrategy. This relates via subclasses to
PtyAreaActivationStrategy. Standard smalltalk expresses the specific
behaviour of these, e.g. user selects item from list.

Button is a way to execute an action, voice, gesture and shortcuts being
other possible ways. Control flow is assisted by PtyReturnValueFromTask,
PtyReturnToPreviousTask.

The PrototypeManager package does not depend on Presenty and is
published as MIT.

Future work will look at making it possible to edit and explore objects, and
to parametrise user actions.

Q(Noury) What is missing from Pharo that would help you? This is done
in Pharo 1.4. He’s not keen on how morphic works.

Q(Leandro) You copy many objects in the graph from a prototype. How do
you copy? He uses the morphic deep copy.

Fuel, Mariano Martinez Peck
Mariano thanked Martin Dias, a key Fuel and Tanker developer, and also
ESUG and others who have supported the work. Tanker lets you export and
import packages.

He demoed in a Pharo 2.0 image that was one week old, with a new
ClassBuilder, so beware! Pavel has been working for 7 years on creating a
small kernel image. He started a VM on the command line and passed the
script to export the packages using tanker. He creates two files, one for the
binary of tanker and the other for the source code. It took 10 seconds to
export the sources and 5 secs to export the tanker binary, representing 1500
classes in 200 packages. He showed the kernel image running as a script
server on the command line, doing 3 + 4, then gave it the command to load
the tanker output to make the new image. Loading took 0.5 secs to create
the classes and methods but 4.5 secs to initialize them.

Tanker cannot know the order of class initialization. A hook is provided
where you can define postLoad actions that call a block. Much code can be
needed to initialize e.g. morphic - he scrolled up and down it. They also
export objects that may be useful or hard to initialize. He opened the image
and showed it had its sources and worked OK.

48 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
His next example exported Seaside, then opened another image and
imported them, taking 30 seconds typically (in fact, only 16 in his demo),
again with most time spent in class initialization. He ran tests and saw 4
failures (known - he took a pre-2.0 Seaside). Then he exported Pier. (In all
cases, he had to write a method of code - a few lines - to do this.)

They also use Fuel as a persistence strategy for Pier. He saved, then deleted
the file, then restarted image to show the error of not finding the file. He
then got the debugger on this error (by allInstances first) and
serialized it into Fuel. Then he loaded it into a new image and sent it open.
He walked the stack, browsing state.

Camillo uses this to serialize failures in Jenkins. Now, every test failure is
written to a Fuel file. You can load a zip of the test image, and the serialized
failure, thus open the image with the failure displayed in debugger. Then
Sean de Negris said, “Let’s build a UI for this”, so they did. He demoed the
tool, just one class called TestReviver from which they can open a
debugger. Some things do not work - they only serialize a piece of the
stack, from the start of the test to the raise of the failure.

Q(Nick Ager) Customer could use this to serialize a bug and send it to a
support group or a colleague? They would also need to serialize any classes
referenced in the stack. Space in google code is limited.

Q(Carsten) There was a CampSmalltalk project StateReplicationProtocol?
SRP’s goal was to be really portable between dialects. The goal of Fuel was
to be fast. The Fuel team looked at SRP and several other frameworks
including some not in Pharo. Fuel was ported to newspeak in 2-3 days.
Felix Madrid is porting to VisualWorks and most of it is working.

Seamless, Nick Papoylias
(The projector suddenly died - not ideal for a talk with many demos. It
came back in time and we saw the scary graphic ‘Die, Socket, Die!’)

Nicka argued one should not use low-level abstractions like sockets. You
can pretend a socket is an object but it isn’t.

Seamless is a framework for remote programming / network programming.
He opened two images ‘local’ and ‘remote’ to demo it. One image did an
(other image’s) transcript show and the other’s transcript showed it. He
then played ping-pong, demoing mutual recursion between the images.
Decrementing 100 over the ping-pong gave even numbers on one side and
odd on the other. The execution stack is distributed - first call with 100 does
not return until will reach 0. Next he decremented in each image with a
block that the other image provided.

He opened a trivial contacts editor, viewed it in the other machine and
turned on logging to show the messages being exchanged as he added a
fresh contact in one machine, then edited it in the other. “Every time you
give your model directly to the UI, you make Smalltalk cry.” B+ trees can
be distributed just like collections (he demoed).

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 49
One use is load balancing. Another is data balancing (talk time limits ment
he skipped demos). In a specific application using Seamless, no doubt data
integrity would be looked at - only share these objects allowing these
methods.

He has examples of remote browsing images via Nautilus and remote
debugging. These are not yet fully stable. The alternative is to make meta-
objects distribution-aware, which he is now working on (in a project
currently called Mercury - he opened a demo of its current state): when
your reflection is distribution-aware, you can program remotely.

When the line between local and remote becomes fuzzy, seamless becomes
‘shameless’ with quantum objects that do not know what image they
belong to. He demoed an example QuantumObject with one instvar and a
method. He bound the varname to another environment and showed
compiling it generated response on the other side.

Alan Kay: “On of the mistakes we made years ago is that we made objects
too small.” He created an object that compiled 666 and the 42 in a method.
The method returns 42, the second compilation. When seamless is used,
both 666 and 42 are returned. Thus you can build an object whose parts are
in each.

Q(Georg Heeg, David Chisnall and others). This seems not new. The three
big problems are concurrency, latency and distributed failure. Georg said
very similar work was shown in 1993. David Chisnall and others said much
the same.

Smalltalk Past and Future
Smalltalk over 31 years, Martin McClure, VMWare
This talk about the history of Smalltalk will also involve Martin’s personal
history. In 1968, for his 12th birthday, Martin got a book about how you
built a computer from unbent paper clips and similar stuff. His mother
attended a course and was told “Type R U N” so she typed “Are You In”.

In 1974, Martin read a two-sided book: one side was Computer Lib: you
must and shall understand computers. The other side of the book was called
Dream machines - new freedoms through computer screens - sort of a
preview of Apple, with quotes that sound like Alan Kay, etc. In the book’s
addendum the author mentioned his visit to ParcPlace and actually
mentioned (in one sentence) Smalltalk.

Personal Dynamic Media was an article by Alan Kay and Adele Goldberg
in 1977; it spoke of 2D graphics, 3D graphics, music synthesis, and it also
mentioned Smalltalk - and showed a listing of Smalltalk-72 code. Martin
saw there was a ref to the Smalltalk-72 Instruction manual. He called the
publicity department, was told it was withdrawn, and 15 seconds later was
talking to Adele Goldberg - who told him they’d publish something soon.

Alan and Adele got permission to do public stuff in 3 phases. The first was
the Byte article. The second was a book. The third was the code.

50 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
Byte in 1981 had 13 (of 15) articles on Smalltalk in that issue. He showed
some of the ads to give a feel for what computing was like in 1981: $3339
(7000 euros today) for a 10Mb disk. C was almost not used - 2 adds for C,
more for commercial Forth systems.

The editorial explains what a mouse is. A diagram tries to explain the
difference between 1981 development and Smalltalk development. One
article explains that people who know nothing about computing find OO
natural whereas those who know (knew in 1981) computers find it strange.
Another article explains text selection.

“Type checking is important in most systems for four reasons, none of
which is important in Smalltalk”

“More than 20 years experience shows us that bad system design cannot be
hidden from the user even by a masterfully-crafted user interface.”

Dan Ingalls showed bitblt. Dan also wrote an article on the design
principles behind Smalltalk. A system must be understandable within a
single mind. Objects. Automatic storage management - code sprinked with
storage management is not easy for humans to follow. Design around a
uniform metaphor applicable to all areas. Modularity (would later be called
encapsulation). Classification (obvious remarks and) new classes must be
on an equal footing with the kernel classes of the system (and vice versa
i.e. you can change the kernel). Polomorphism. Factoring (20 years later,
this point would be rechristened by Kent Beck as “Say it once and once
only”). When a system is well-factored, users get leverage. Dan included
having a Virtual Machine specification in his list (Martin agrees that the
well-defined interface spec is valuable). The Reactive principle: every
component accessible to the user can present itself for meaningful
inspection and manipulation - i.e. the inspectors, workspaces, etc.

Dan argued against having an operating system - the tradition continued by
SqueakNOS but least achieved in general.

Natural Selection is Dan’s final principle. We have since then seen
language fads. A language that is technically better, so needing fewer
developers and managers, can for that very reason get outvoted when
groups merge, etc. However we are still here talking about Smalltalk.

Peter Deutsch wrote on building control structures in Smalltalk. He
presented the block. As an example, he built a case statement. He then
impemented comma on block context to show just how easy it was to make
such changes. He also showed exiting from a loop while remaining within
the method. Martin tried the code example in GemStone and it works - but
we are quite happy without this feature so he’ll leave it that way. Finally,
he explains that Smalltalk enables this because it has blocks, can access
control state directly, and because anything in the system can be changed.

Article: “Is Smalltalk-80 for children?” using a program that looks a little
like EToys. Another article showed a drawing tool more useable by artists

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 51
than typical computer tools of the time.

Finally Ted Kaeler wrote about memory management: main memory 50-
199k bytes, disc 5-10 million bytes.

Elsewhere in that issue of Byte, a rumour that IBM planned to release a
small computer, and that IEEE would publish some standards.

In 1982 GemStone was founded. Monty was there at the start and is here in
the audience. In 1983 Martin got the blue book, the green book and in 1984
the orange book. He read the books but still couldn’t run Smalltalk till 1985
when Apple released Apple Smalltalk, later the basis for Squeak. He sent
$50 for the stack of floppy disks. At the first meeting (in his house) of the
user group that he’d founded (all 5 of them), the disks hadn’t come yet, so
at next month’s meeting he was the expert because he’d been using it for 3
weeks.

His first major career decision was whether to work in hardware or
software. Using Smalltalk was the most fun so in 1994 he started in
Smalltalk and today he’s at GemStone, still programming in Smalltalk, still
having the time of his life.

Q(Georg) Two extras: another issue of Byte is 3 years older and it
introduced Pascal. That issue had the ivory tower of Smalltalk - “the craggy
aloofness of Smalltalk” (shown as in the middle of the Fortran ocean).

Next year, we have the 30th anniversary of the first external computing use
of Smalltalk (via another Xerox division who produced computers for one
big customer, who still exists). Mark Roberts, documentor at Cincom, is
one of the kids who learned Smalltalk in the 70s.

James Foster read an article by someone who, as a child, spent 3 or 4 years
visiting the Xerox Parc office from junior high school to do Smalltalk.

Smalltalk in a C World, David Chisnall, University of Cambridge
Etoile wants to reinvent everything, but reuse some existing code. No
application should need more than 1000 lines of application code. (Number
of bugs per line of code is a constant.)

Smalltalk has moved up from 70 to 39 in the TIOBE rank of languages -
essentially a measure of how many people are hiring, so it indicates how
much existing code there will be in that language. C is top of the list, with
Java 2nd (lots of code - every object needs a factory) C++ 4th, ObjectiveC
3rd but with much less public-domain code (partly because each line
achieves more).

For example, sorting unicode strings in a locale-aware way (i.e. to be right
for French, German and Spansh) is really tricky and really boring. When it
has been done right, you don’t want to do it again.

The Smalltalk goals of Etoile are no VM, just native code, with both JIT

52 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
and static rcompilation (e.g. change method on class at runtime, replace
static with JIT recompilation of method, etc.). They also want to
interoperate with ObjectiveC (and C and C++), and easy embedding in
existing systems. Smalltalk performance must appear OK or people will
stupidly avoid using it. And they want automatic persistence.

100% compatibility with Smalltalk-80 class library is not a goal. There is
vastly more experience in the world in Apple libraries, even if Smalltalk
were 100-times more productive.

Objective-C is their foreign function interface. He showed the most
convoluted hello world program he’s ever seen. It was ObjectiveC
(actually ObjectiveC++). He showed calling C’s sqrt in such programs.

He showed the architecture: see his slide. The OMeta parser is almost
finished and will replace the C parser. At the top, Smalltalk Apps rest on a
couple of Smalltak support libraries that parallel the ObjectveC apps and
top-level libraries. They use immediates like Smalltalk. They recently
added 7-character ASCII strings to the immediates on 64-bit and it turns
out they are everywhere (15000 created in a program that takes 0.5secs -
XML parsing uses them a lot, etc.)

Lastly, hardware (Alan Kay quote). He is working with a hardware group
(funded by DARPA) that will soon release a 64bit MIPS softcore platform
that provides hardware-assisted GC. Because David works in an academic
group that also does hardware, when he wants new instructions he just asks
and in a week or two they’re there.

They want to have a platform where they can start with Smalltalk which is
productive. As we head into multi-core and distributed, Smalltalk may start
showing its age and then new languages may be added.

Q. Reuse: what code is worth reusing? (“Good question”) Some code
solves the general case and you need it for a particular case. Other code
starts specialised and you discover over time that it has wider applications.

Q(Stephane) NativeBoost? Good example of not reusing. The LLVM
register allocator is 30,000 loc - maybe 150,000 with all optimisations. If
the goal is to have a flexible experimental platform, NativeBoost is good.
If the goal is to run fast, then if Smalltalk is 100-times more productive than
its rivals, that still translates to many years of effort.

Show us your project(s) in 10 minutes maximum
At the end of the second session, Stephane remarked that we are getting
good at staying within the 10 minutes.

New ObjectStudio UI Framework, Andreas Hiltner
ObjectStudio comes with DLLs. When debugging reaches one of these,
magic happens on the screen, not the ideal Smalltalk debug experience.
The new UI framework project will be all Smalltalk, no DLLs. People in
financials and etc. do not like receiving bugfixes that are DLLs - are they

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 53
safe? A five-line change of Smalltalk code is much easier to review for
safety at a customer site than a 900k DLL. Clients can also change the code
to their liking. It will also be a lot easier to add new widgets.

Some of this will be in the next major release. They now use the standard
C API for CommonControls (the progress bar and the marquee progress
bar), and the font cache. Menus are now more customisable.

Andreas demoed opening a simple window with a button, while having the
transcript show all the events being received by the window button,
indicating the degree of control available in the framework. All this is made
visible via announcements and you subscribe and thus get reaction to UI.

They now have an ipAddressControl widget where you can limit the range,
set the net mask and so on. Likewise he showed a new listbox, nothing
special but ObjectStudio now picks up the theme easily. While demoing a
password editor, he changed the size dynamically, trivial in Smalltalk but
with a C widget you would need to recompile.

smalltalkedVisuals, Christian Haider
He looked up VMWare - a publicly listed Smalltalk company (rumour has
it they do other stuff as well) - in Bloomberg in the left pan of his program.
(He got the Frankfurt entry first and used that.) Thus he got the data for a
graph. The right font was not installed on this laptop so the look and feel
was not quite what it will be in actual use.

The art director of the newspaper sets the chart layout and the tool enforces
that (very important to customers) so only some things can be changed by
standard user (if you recognise this layout, you know one newspaper that
is a customer). User can change the scaling but Christian’s algorithm for
the scaling is very good and they rarely need to. You can change the
duration of course. He chose a later time and saw VMWare value going up
(must be after the acquired GemStone). He played with a few layout
options, superimposing different-coloured other lines, etc. He displayed in
PDF where of course it looks better.

ARM Jitter, Lars Wasserman, Summer of Code
ARM is a common platform for small devices and their performance is low.
A JIT can make the difference between usable and not. ARM is the logical
next step for Cog to use as a processor to support.

He started by getting the CogVMSimulator running. Using this, he mapped
from the intermediate representation (RTL Opcodes). He worked on
generating memory chunks. Finally he was able to compile.

The simulator used in GDB was the one he used, extracting the parts he
needed. (It is an old simulator, last commercially worked on in 1994). He
created a plugin that disassembles libopcodes and then the ARMEmulator
could execute them.

The compiler generates most of the bytecodes correctly (all correctly, and

54 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
getting it running, is to do). So he needs to convert/check his cogit changes
to be SLANG. He needs to check the organisation of constants. Three
instructions load a word and a fourth handles the whole word. He does not
have a Mac so has not built the plugin on Mac yet, just Windows and Linux.

Concrete Type Inference, Santiago Bragagnolo, Summer of Code
He worked on symbolic (non-run-time) type inference. He selected some
expressions, inferring the return types of the returned object and its
instvars. It returns ? when there is a type which it cannot infer.

The core class is called KwisatzHaderach (because type inference sort of
predicts the future actual execution :-)).

KwisatzHaderach callGraphFor: [...code...]

looks at the byte codes that execute and thence does the inference.

Q. Blocks? Each block is its own type.

Q. Symbolic execution? No, just type inference.

Improving the Debugger, Karsten Kuche, Heeg
Karsten created a seaside application that renders a diff for 100 levels of
rendering (gives a pretty pattern). He breakpointed renderLevel:on:.
His debugger displays overridden methods in red and emboldens your
break context to make it easier to get back there.

You cannot scroll down if you have 1 million frames: if you try, you scroll
down doubling the stack each time until it crashes through reifying all
those intermediate frames you don’t care about. Now he can jump 1 million
frames instead of the impossible scrolling.

From an inspector he can open an ‘inquisitor’. A dialog asks, ‘What do you
want to observe?’. Karsten inspected a window and chose to observe its
height. He then resized the window and saw his inquisitor observing its
changing height. This is great for finding when a damaged rectangle has a
certain value while debugging.

Suppose you want to debug at:put: for a certain dictionary only. A
breakpoint popup lets you choose that one dict (from allInstances) and
he showed that the debugger breaking in that dict but not in another.

Karsten then presented his Cocoa adaptor. He showed the XCode outlets
and inputs for a widget. He wrote standard UI methods in VisualWorks
with <method> pragma and another pragma giving the return type, since
ObjectiveC needs that (e.g. <returnType: #void>) Thus he can create
applications with native Mac UI. He showed another Cocoa widget that
drew a gradient and also had a text pane where you could evaluate
expressions to change it (e.g. rotate it).

Roassal in Amber, Vanessa Pena
Roassal has what Mondrian had but with more freestyle application. She

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 55
showed filling a screen with coloured balloons. Similar to inspect, the
method visualize opens a Roassal screen on an object. The resulting
graph was a bit like the object explorer but with better colour, more
dynamic with showing data when clicked on and etc.

Roassal now works in Amber. It’s a bit slower but the examples she showed
were usable. She showed the collection hierarchy analysis example.

Rizel: multi-dimensional Profiling, Juan Pablo Sandoval
Rizel handles two dimensions: the benchmark version and the current
(‘silver’) version. In VisualWorks, they use the ATProfiler. In Pharo, they
use MessageTelly (same kind of tool).

They can see (red colour, dimensions) which methods are slower and are
absolutely much called or slow. Select and open the comparison tool to see
code compare. In XMLSupport, between versions 6 and 7, we can see some
changed methods and two new (in yellow), and the colours and dimensions
show where to look for the cause of the slowdown.

Zinc Websockets, Sven Van Caekenberghe
Zinc HTTP Components is a framework Sven wrote a while ago, on top of
Zodiac because they needed security. Zinc WebSockets makes it possible
for the server to initiate communication - previously communication was
always initiated by the client.

He demoed from the client side, going (in web browser) to a website
WebSocket.org which explains the technology, and also answers back
anything you send it.

(ZincWebSocket to: ‘http://echo.websockets.org/’)
sendMessage: ...

and he got his message back. He showed the Javascript of the WebSocket
site’s echo behaviour, then implemented it in Smalltalk. On the server side,
runWith: runs in a loop and responds when anything is sent.

This week, people have worked with this and now have Amber Smalltalk
speaking to Pharo Smalltalk.

SourceCode TourGuide, Hwajong O
Hwajong O is from South Korea. The system browser shows everything by
name. It is like a dictionary, not a book. It is good if you already know the
name, less so otherwise. His project is to make the browser more like a tour
guide who tells a story and helps you find things.

He opened the tour guide, then drag-dropped various classes, methods,
etc., into the tour guide’s list. He finds this useful for e.g. bookmarking the
methods involved in a Metacello baseline, for use when he wants to create
a new one. Other uses: help new team members, conference presentations.

Q(Stefan) You can navigate in this browser? Yes, when not in the list view.

56 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
Presenty, Denis Kudryashov
He showed adding behaviour to his demo talk of yesterday using his
framework. When he drew a rectangle in the drawing tool, the up arrow in
the browser was activated, so everytime his drawing was enough like a
rectangle, it selected the class above.

PHANtom, Johan Fabry, Daniel Faidames, Universidad de Chile
A modern aspect language for Pharo (probably also works in Squeak).
Aspect. e.g. logging, represents a cross-cutting concern. An aspect contains
behaviour - what will it do - and quantification - where the pointcuts are.

When a method is being executed, that is passed to all the predicate WHEN
classes. Those that are interested then run their WHAT behaviour.

PhPointcut receivers: TestCase selectors: ‘assert’

PhPointcut receivers: TestCase
selectors: HASH(assert ‘assert:description’)
context: HASH(receiver selector argument)

PhAdvice after/around ...

PhAdvice is a class you can install or uninstall. When it is active, it’s
advice will run whenever its pointcut is matched.

Q(Martin) performance? It’s slow, because method wrappers intercept the
points of interest. A student is looking at recompiling stuff to improve the
performance.

Q. Compare to AspectS? They derive from it but have added more features.
Lets you specify in a more smalltalk way.

DeltaWerken, Stefan Eggermont, Diego Lont
DeltaWerken is a framework they use to create Seaside applications.
Storyboard is their demo application - a planning application, showing
iterations and stories, coloured showing status. They added a task (to make
a screencast of this talk). They clicked and added the documentation task.
They dragged it around in the list.

They showed the code framework. It’s based on Magritte’s approach but
with some changes. They have users and announcements and code to wire
it together. A range of Seaside components can be used to display e.g. a
Story. They have drag-drop, and support multiple views on same object.
The framework is exercised on Pharo 1.3 and 1.4, and persisted in
GemStone. It should work on other dialects - any dialect with Seaside.

ASN1 Parser, Norbert Hartl, 2denker Gmbh
Norbert builds stuff in Smalltalk to make people want it. Abstract Syntax
Notation 1 describes how data is encoded transmitted and decoded over the
wire. It’s used in SNMP, LDAP, etc. He has a contract from Iceland
Telecoms to help do a GSM network (http://www.on-waves.com).

The BNF is 384 production rules. PetitParser handles this one-one. It

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 57
creates a runtime model, no classes are compiled (at the moment, because
it is fast enough). 90% of the rules are translated; he omitted XML as he
knows no use case for it.

He demoed by connecting to esug for registration and checking the
certificate. Via openssl, he downloaded the certificate and checked it.
Using various protocols, he can get data over the wire and parse it.

It will be open-sourced within 2 months, on on-waves.

Robotics with Smalltalk, Noury Bourakadi, Ecole de Mines
Several projects in this domain are being done in this area. Arduino drives
robots from Pharo. This has been upgraded to run over a network. He
showed an amateur video. There is a project to use robots to explore an area
and map it. A related project estimates how efficient the search is for given
numbers of robots (he showed another video).

URBi ST drives a human-shaped robot with middleware called URBi.
Robot follows red box moved on screen (video).

Next week, the ROST project will work to provide a Smalltalk front-end to
ROS middleware and so explore use of robots in shopping malls.

File versions in Store, Carsten Harle, straightec
Datenzaentrale’s large application wants to store files in Store. Files should
be handled the same as methods, etc. File timestamps must be preserved.
File deletion must work.

They have 9,000 classes, 100,000 methods and 9,000 files: 6400 are Cobol
files and the rest are icons, HTML and Smalltalk server pages.

Basic file support is in Store but it has almost no UI. Carsten made it
preserve the file timestamp. He implemented loading of deletions. He
made merge work including files. He could not change Store so ensured
backward compatibility (by ingenious exploitation of a bossed objects
ability to hold another object).

His add-ons give Store extra menu items: compare files, add files, etc. (He
can also lock files or bundles if you want to avoid optimistic merging. This
supports some processes at Datenzaentrale.) The merge tool can handle 3-
way merges of files and shows a useful browser. There is a file version
browser, like a method browser.

In the second part of his talk, Carsten presented his merge alogithm tweaks.
He can merge files and his algorithm is faster and avoids spurious matches
in complex bundle-subpundle cases. The use case is a trunk, plus branch
with 2 methods and one files change a bundle with complex structure and
216 packages. Carsten’s ‘Merge with Base’ approach allows the tool, with
the user’s help, to discover it need only regard changes in 3 items instead
of 166 items and 83 conflicts, with gain in speed and clarity.

58 CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
Virtual Plat machines, Vitali
The domain is Life Sciences. Many tools must be integrated: info on soil,
water, environment, modelling, etc.,. from Fortran, MatLab, etc. The
virtual plant models how the genotype maps to the phenotype. After 10.5
months of work they delivered at the time required and sent the invoices
the day after.

SUnit: pluggable Suites and Results, Niall Ross
Using SUnit, we all subclass TestCase. I showed patterns for subclassing
TestSuite and TestResult. These will be available in the open repository and
elsewhere. Feedback on these is welcome to see which of many possible
patterns will be most useful.

The standard SUnit TestSuite runs tests in the same order every time. I
showed a subclass that ran them in a random order that is remembered (in
case there are errors to debug, revealed by that reordering).

When tests developed by different people are grouped together, e.g. in a
product suite, their resources can conflict. For example, perhaps the system
can only connect to one database at a time, and the overall suite finds itself
with two resources that connect to two different databases.

• Some testers will be willing to have a slower run rather than see a non-
significant failure. For example, batch testers, whose suite is run
overnight or over the weekend, have plenty of time and may be unable
to alter tests supplied to them.

• Others may have the opposite priorities. A developer who is running a
integration test suite may want to see a clashing resource error (so they
can tag their new clashing resource as in a conflict set, needing distinct
setUp/tearDown). If the suite is that development group’s one-at-a-
time bottleneck for doing integration, the alternative of making the
suite run slower may be very unacceptable.

I demoed how different subclasses could be made to run tests

• either optimistically: assume resources do not conflict unless they are
tagged as in a conflict set

• or pessimistically: assume any two resources in the suite may conflict
if they are not jointly used by some test.

trading speed of execution against the risk of unmarked resource conflicts.

Lastly, I showed holding the results and times of the last run of a test in the
image, keyed against that test’s compiled method so that changing or
unloading a test flushes it from the cache. This plugs into the RB display.

Q(Stephane) provide setter for subclassed suite and/or result in the
framework, not in specific tools? That is preferable but may be tricky.

Q(Stephane) Would another use be for remote debugging? It’s an idea.

CS18 and ESUG 20, Ghent, August 25th - 31st, 2012 59
Import Business Objects With Automatic Test Generation, Martin
UnterHolzner & Martino Trosi, Lifeware
Lifeware have a web-based app to manage insurance contracts. They won
a contract to retire a rival system (that used Oracle for its persistence) on
Friday evening and restart in their VisualWorks system (that uses
GemStone for its persistence) on Monday morning. Thus they needed to
get events from Oracle on Friday and replay them on their system.

They had to test this. They copied data from the relational database and
generated the tests automatically from the events. He demoed, introducing
a bug and showing the test now failing.

Pier 3, Nick Ager
Pier runs on Magritte 3 which is Magritte 2 new and improved: it drops
naming conventions that clashed, drops class-side descriptions that caused
validation issues, and uses pragmas. Nick has written a refactoring that
maps Magritte 2 class-side descriptions to Magritte 3 instance-side
descriptions. He has produced a video on Magritte 3. See
twitterboosting.seasidehosting.st for the example he showed of what
Magritte 3 can look like.

Pier 3 is a base Pier that uses Magritte 3. Pier WYSYSWIG lets you edit
Pier markup in a Pier editor. Pier Admin and Pier Setup assist managing
Pier. He went to Pier Admin Setup. It offers some predefined templates: the
blog template, the book template and others. He chose the book template,
created a user, added sample content. It created an instance of the book and
asked if he also wanted a book-admin instance to administer the book.

A Pier kernel is an object graph. In Pier 2 and Pier 1, the template would
have to include the stuff for managing it and the css could often confuse
this, but in Pier 3 these are separate. One of the really nice features is the
ability to pull in code for your image, using Shout to colourise, using the
same syntax highlighter. This could progress to a self-documenting system
that pulled in changed code.

He edited some book text using the usual WYSYWIG editor, which works
by putting Pier markup into the basic text.

Next he created another instance from the blog template, and imported a
blog. He took Mariano’s wordpress blog. (“There he is in the audience,
wearing the same shirt” :-)) The blog was promptly there in Pier format,
having done good stripping, so there was no nasty HTML in the blog.

A problem he has met is importing from old Pier.

Other Discussions
Hans Martin-Mostner of Heeg is looking at Raspberry Pi. It can't run
Ubuntu (it’s too small / simple) but it is really cheap: $35 for the B model
and even cheaper for the A model. (There is no memory on it: everything
is plugged in from USB.) Squeak runs on it but is slow. Scratch has been
made to run (sort of) by a student but is really slow. Work is progressing on

60 Conclusions
a better Scratch implementation on it.

The Lifeware guys showed me a refactoring tweak they thought might be
good for the refactoring framework base: adding data to the context of a
refactoring to assist refactorings related to their internationalisation work.
They would also like a ‘safe remove’ that removes all implementers of an
unsent message. When a class is removed, any subclasses should be
(offered to be removed or) reparented to the superclass. Fede of Lifeware
also sat with Martin to review socket issues. Lifeware are looking at using
Polycephally to enhance their remote testing framework.

Felix Madrid is working at Abit in Dusseldorf (formerly he worked at
Smalltalk/X). He ported an ObjectStudio system from v7 to v8. Now he is
working on a Seaside app.

Hwajong O is one of a small South Korean Smalltalk community (~ 7
people who meet every 3-4 months). They want to find a Smalltalk project
task external to the group to increase visibility. Stefan suggested a data
conversion project as a low risk project to seek out. Hwajong knows of a
WhiteHawk project running on old (2.5) VisualWorks (missile tracking
system, Israeli in origin: it teaches the missile to track the target, running
on an Onyx 10000 operating system).

Roel Wuyts is now working on a hyper-performance computing project (no
Smalltalk involved, alas). His Smalltalk students at VUB are finishing so
he visited the Camp Smalltalk to see what was on and whether any more
Smalltalk involvement was possible.

Conclusions

It is much more relaxing to attend an ESUG when you are not the organiser
(I organised last year’s conference in Edinburgh :-)). And it’s pleasant to
meet a range of commercial Smalltalk users and have several of them stand
up and present what Smalltalk can do.

Written by Niall Ross (nfr@bigwig.net).

* End of Document *

	CS18 and ESUG 20, Ghent, August 25th - 31st, 2012
	Style
	Author’s Disclaimer and Acknowledgements
	Venue
	Summary of Projects and Talks
	Camp Smalltalk 18
	ESUG Activities
	Conference Welcome and ESUG Activities Overview, Stephane Ducasse, Johan Brichau
	Innovation Awards, Jordi Delgado
	Conference Wrap-up, Stephane Ducasse and Luc Fabresse

	Applications and Experience Reports
	Continuous Integration - a Practical Approach, Maikel Vandorpe and Elke Matthis, MediaGenix
	Extending a Base Product for Multiple Customers, Denis Defreyne, MediaGenix
	Building a Business with Cincom Smalltalk, Arden Thomas and Dirk Verleysen, Cincom Smalltalk
	Testing Smalltalk AJAC/SJAX Web Applications with Selenium, Carsten Harle, straightec
	How do I represent model scenarios, Leandro Caniglia
	Refactoring Support for Smalltalk Using Static Type Inference, Martin Unterholzner, Lifeware

	VMs and Development Environments
	iOs: Smalltalk and ObjectiveC, Tansel Ersavas
	Cincom Smalltalk, Arden Thomas
	Pharo, Stephane Ducasse
	VA Smalltalk, John O’Keefe
	Code Completion Seth Berman, VASmalltalk
	GemStone/S Update, Monty Williams, GemStone
	Smalltalk and Java Interoperability, Claus Gittinger, Jan Kurs, Jan Vrany, Marcel Hlopko
	StX:libjava, Jan Vrany
	Amber, Nicholas Petton

	Frameworks and Tools
	Advanced Visualisations to Tame Wild Program Execution, Vanessa Pena, Alexandre Bergel, Juan Pabl...
	Smalltalk in the Cloud, James Foster
	Petit Parser Tutorial, Guillame Leveque
	Real-World Seaside Applications, Nick Ager
	GIT and Metacello, Dale Henrichs, VMWare
	The Metacello Doctor is IN, Dale Heinrichs, GemStone
	Advanced Seaside, Phillippe Marschall
	Glorp, Karsten Kuche
	Presenty, Denis Kudryashov
	Fuel, Mariano Martinez Peck
	Seamless, Nick Papoylias

	Smalltalk Past and Future
	Smalltalk over 31 years, Martin McClure, VMWare
	Smalltalk in a C World, David Chisnall, University of Cambridge

	Show us your project(s) in 10 minutes maximum
	New ObjectStudio UI Framework, Andreas Hiltner
	smalltalkedVisuals, Christian Haider
	ARM Jitter, Lars Wasserman, Summer of Code
	Concrete Type Inference, Santiago Bragagnolo, Summer of Code
	Improving the Debugger, Karsten Kuche, Heeg
	Roassal in Amber, Vanessa Pena
	Rizel: multi-dimensional Profiling, Juan Pablo Sandoval
	Zinc Websockets, Sven Van Caekenberghe
	SourceCode TourGuide, Hwajong O
	Presenty, Denis Kudryashov
	PHANtom, Johan Fabry, Daniel Faidames, Universidad de Chile
	DeltaWerken, Stefan Eggermont, Diego Lont
	ASN1 Parser, Norbert Hartl, 2denker Gmbh
	Robotics with Smalltalk, Noury Bourakadi, Ecole de Mines
	File versions in Store, Carsten Harle, straightec
	Virtual Plat machines, Vitali
	SUnit: pluggable Suites and Results, Niall Ross
	Import Business Objects With Automatic Test Generation, Martin UnterHolzner & Martino Trosi, Life...
	Pier 3, Nick Ager

	Other Discussions

	Conclusions

