
CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 1
CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
I stayed with friends in the Lugano area and had a great time swimming in
the lake and exploring the high mountain valleys and cascades when I was
not at the conference.

When Suzanne arrived on Monday, it chanced that most of us were not near
the registration desk and the student volunteers who were manning it had
not met her before, so led her through the usual intro: “Are you registered?
What’s your name? ...” For the first time in a long time, one of her favourite
joke catch-phrases, “Do you know who I am?” gained literal significance.

We were treated to a meal at the top of Monte Generosa mid-week. Lugano
lake is at 271 metres, the top of the mountain at some 1700 metres.
Fortunately we only had to walk the final 100m of the difference (not quite
enough to walk off the meal’s many calories :-).

Style
In the text below, ‘I’ or ‘my’ refers to Niall Ross; speakers are referred to
by name or in the third person. A question asked in or after a talk is
prefaced by ‘Q.’ (I identify the questioner when I could see who they
were). A question not prefaced by ‘Q.’ is a rhetorical question asked by the
speaker (or is just my way of summarising their meaning).

Author’s Disclaimer and Acknowledgements
This report was written by Niall Ross of eXtremeMetaProgrammers Ltd.
(nfr AT bigwig DOT net). It gives my personal view. No view of any other
person or organisation with which I am connected is expressed or implied.

There was much activity in the Camp Smalltalk room, only some of which
I learnt enough about to summarise (with possible errors) below.
Inevitably, my notes treat my project in much more detail than others.

Likewise, the talk descriptions were typed while I was trying to keep up
with and understand what the speakers were saying, so may contain errors
of fact or clarity. I apologise for any inaccuracies, and to any participants
whose names or affiliations I failed to note down. If anyone spots errors or
omissions, email me and corrections may be made.

My thanks to:
• Katerina Barone-Adesi, Thorsten Seitz, Adriaan Van Os, Michael

Prasse and John O’Keefe for working with me in the Custom
Refactoring Browser project, and to Katerina (again) for taking notes
of some Academic Track projects I missed

• Michele Lanza, his University colleagues and all the student
volunteers, for a smooth-running conference.

• the speakers whose work gave me something to report, the ESUG
organisers and the sponsors: see their logos on http://www.esug.org/
conferences/15thinternationalsmalltalkjointconference2007

2 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
Summary of Projects and Talks
I give the Camp Smalltalk 12 projects summary, then the ESUG and STIC
activities reports (including the awards presentations and ceremony, and
the Summer of Code report). Next I summarise the conference talks, sorted
into various categories:
• Applications and Experience Reports
• Application Frameworks: Seaside, GLORP, Cairo
• Vendor Reports
• Compilation Research
• Java Connectivity
• Development Processes and Frameworks
• Utilities
• Miscellaneous
followed by the Research Track. I close with Other Discussions and my
Conclusions. Talk slides are on http://csl.ensm-douai.fr/Esug2007Media/.

Camp Smalltalk 12
Camp Smalltalk 12 ran for Saturday and Sunday before the conference, and
during the conference breaks, afternoons and some evenings of the five
conference days.

The Custom Refactorings and Rewrite Editor Usability Project
(See also my presentation in the Project Summaries section.) Katerina
Barone-Adesi and I wrote a test for ‘extract with holes’: the ability to select
text for ‘extract to self’ and then select within it those parts that were not
to be extracted but instead made additional parameters of the method.
Thorsten Seitz then joined us and began implementing a solution. After the
CS, work will continue to add this behaviour to ‘extract to component’, etc.

While Thorsten progressed the new refactoring, I paired with John
O’Keefe to fix some tests that were failing in VASmalltalk 7.5.2 on Linux.
Line-end conventions and hard-coded values in RBConfigurableFormatter
were the cause; we sorted them out. Meanwhile, Adriaan van OS made the
‘Remove Parameter’ refactoring visible in VASmalltalk. I also worked
with John to rationalise our MethodWrappers implementation. (Longer-
term, John will explore using VASmalltalk method-spy features to
reimplement method wrappers using the same API.)

Michael Prasse works on a large VW system in which several sub-bundles
implementing basic utilities are contained within more than one super-
bundle. When he does ‘Find Class’ on a class in one of these sub-bundles,
the Refactoring Browser is very slow because the full expansion checking
code for the sub-bundle is run for each of its containing super-bundles.
Michael implemented a variant in which the redundant expansion checks
for a repeated sub-bundle were not done after its first container but instead
reused in the others. He also built a tree widget for the class pane in the VW
Refactoring Browser.

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 3
I also paired with Travis to see his ideas for Cincom’s VW RB and review
what from our project could usefully be incorporated into the VW base.

See also my talk in the ‘Utilities’ section below.

Sport
Bruce Badger’s group ported Sport to Visual Smalltalk / Visual Smalltalk
Enterprise (I learnt that some users still call it VS and see the E in VSE as
an unneeded addition to the name :-). See Bruce’ talk for more details.

Seaside Applications
Martin McClure led porting the Seaside-based Gjaller application to
GemStone (Gjaller is an issue tracker). Dale Heinrichs and Lucas Renglii
helped me begin porting Pier to VW. Work was also done adding to
Seaside’s port-enabling test suite.

Exubery
The Exubery group worked hard debugging a crash which they found was
very close to the start of memory and eventually managed to solve.

ESUG and STIC Activities Reports
ESUG Activities Overview, Michele Lanza, Stephane Ducasse
Michele thanked all the people who had helped him, starting with the
ESUG Board, especially Stephane, Noury and Serge. Marco d’Ambros
organised the social event. Katerina Barone-Adesi led the student
volunteers. Romain Robbes helped with travel information (as did I).
Mauro Prevostini found local sponsors. Marcus Denker did the DVD.
Christian Caggiano designed the logo. The general support of Richard
Wettel, and Marisa Clementz and Christina Zanetti, was much appreciated.

Stephane then welcomed us all. He thanked Michele for the excellent
organisation. He thanked the Prague sponsors and the sponsors this year in
Lugano: Cincom, Instantiations and Gemstone, Georg Heeg, National
Spaarfonds, Lifeware, metaProg, gai&partner and JPMorganChase.

Total ESUG attendance at Lugano was 109: 94 who pre-registered and 15
further participants who registered at the desk or attended through local
sponsor packages. Stephane asked how many were attending their very
first ESUG? Quite a few hands were raised. He urged us to use the student
volunteers as the first point of contact for any questions about either the
conference or the local area, and also urged us to help the students get in
touch with the Smalltalk community by showing them our projects.

Anyone who wants to be one of the local organisers for ESUG in 2008
should tell him. Spain and Romania have never had a conference and they
are likely candidates for 2008 on current plans, so he would be happy to
here from anyone located such that they could assist local organisation
there. (ESUG could go to Belgium in 2008 but has been there recently and
often, and it is likely that ESUG 2009 will be in Lille.) Anyone wondering
what helping with local organisation requires can read the description on
page 3 of the ESUG 2005 report (http://www.esug.org/data/NiallsReport).

4 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
ESUG sponsors Smalltalk in various ways:
• ESUG can sponsor presentations of Smalltalk, i.e. pay travel expenses,

etc. For example, Marcus manned the Squeak booth at RMLL.
• Via the Summer of Code, ESUG sponsors students to do projects.
• ESUG sponsors free Seaside hosting (handled by netstyle.ch).
• ESUG offers material for giving Smalltalk lectures. If you get a

Smalltalk article printed in a magazine, ESUG will give you 100 euro
(3 articles were sponsored in 2007).

• ESUG helps students who move to Smalltalk groups.
Attending ESUG is how you sponsor all this. Registering late for ESUG is
a way of sponsoring more. :-)

Promoting Smalltalk, Smalltalk Industry Council
Georg Heeg presented the Smalltalk Industry Council. He showed the new
STIC logo, created by Vassili Bykov. STIC has four purposes of which the
first and second, to create Smalltalk awareness and to promote Smalltalk,
are the focus for this year (the others are to attract skilled people into
Smalltalk and to help form cross-dialect standards). STIC is an association
under North Carolina law (which is strict; German is the worst and Georg
loves French; the French law on associations is much more relaxed).

Q. Interact with SqueakFoundation? Yes we will talk to them.

They work with Smalltalk user groups but STIC is concentrating more on
attracting strangers to Smalltalk.

In 2008, Smalltalk Solutions will be in Reno, Nevada at the Grand Sierra
Resort (www.grandsierraresort.com) in mid-June. See the slide to get
motivated by pictures of the Nikki beach and the bar (there was also a
picture of the lecture hall but that was only a quarter of the pane; let’s
concentrate on the essentials :-).

James Robertson is the main webmaster of STIC, assisted by Andreas.
Hand Martin-Mostner, Frank Ralf and others will help them. In future, the
STIC website could host a Smalltalk product network and success story
network. STIC is a mainly volunteer organisation: a secretary is sought and
a new treasurer will be needed in September. At Smalltalk Solutions 2007,
Cincom brought out OS8, Instantiations brought out VA7.5 and GemStone
brought out GLASS; for the first time in over 10 years, all three major
vendors are strong at the same time.

Q(Tim) What has happened since 2006? Georg has been in charge since
May 2007. Not much had happened between 2006 and May 2007. (STIC
lost its old URL during that period.)

Q(Tim) Should someone from Squeak be on the board? A volunteer with
time, energy and finance from Squeak would be welcomed. Suzanne
stressed that people who will do things will be welcomed.

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 5
Q(Joseph) Let’s see concrete links. David Pennington has hosted the
TotallyObjects smalltalk newsgroups on his own for 8 years. Let’s link to
him. (There was agreement that this made sense.)

Q(Jaroslaw) How will you promote Smalltalk? We’ll get the website
running first (stic.st). Send your ideas to stic_management AT stic DOT st.
Seaside is important so STIC will embrace the representatives of Seaside.

(Stephane took over from Georg.) We don’t know how to talk to managers.
Send ideas to Stephane (ESUG mailing lists are being changed to eliminate
spam). ESUG can support you to do something, e.g. present at a conference
about Smalltalk (email them: if they say it is OK, they will pay the budget,
so it is very simple to do). They will pay 100 euro for a published article
on Smalltalk. If a university or public body want a Smalltalk teacher, they
will provide one free. They will support Smalltalk research papers at non-
Smalltalk conferences: 200 Euros per paper (only one per person and 3 per
institution per year; send them the PDF plus conference acceptance). They
will sponsor booths at conferences. They will support (i.e. with money)
open-source projects; ask them and they will consider and decide.

Seaside ambassadors are wanted. They will support your talks. Lucas went
to Poland last year to do that. Then they just paid his costs but now they
will pay that and a bonus (enough for yet another IPOD).

ESUG missed Google’s summer of code so did their own Summer of code
for Smalltalk. In 2006 they had 5 projects. In 2007 they had 2 projects.
Projects must be in Squeak or in VW at the moment.

ESUG Board
The ESUG board is re-elected every two years. This year, Roel retires (due
to the time commitments of his new job). Stephane, Noury, Marcus and
Serge are already on the board. Michele Lanza was proposed as new
member. All were elected on a show of hands.

Smalltalk Awards Ceremony, Noury Bouraqadi, Joseph Pelrine
(Happily, a rumour that the wine for the awards ceremony had not arrived
proved groundless.) There were 6 entries at Kothen in 2004, 9 at Brussels
in 2005, 11 in Prague and 15 this year. All Smalltalk code (and related code,
e.g. a Smalltalk VM) is eligible, whether used commercially or for
research, and whether written by academics, by students or by commercial
programmers, provided it is separable from its background system. Prepare
your software for next year!

The entrants made two minute presentations:
• Pier is Lucas Renglii’s open-source content-management system. It is

meta-described, using Magritte to describe relationships and fields.
Content can mix ordinary wiki input with Seaside components, etc. It
is based on Seaside but is not tied to Seaside; it can use Morphic instead
or whatever renderer is available. Pier is implemented in Squeak.
[Niall: I have ported Pier to VisualWorks; it is now in the Cincom OR.]

6 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
• DakarTest is Carsten and Damien’s work: it provides additional
features and a better UI on top of SUnit and SUnitToo in the VW
Refactoring Browser. It provides coverage of what code a test ran,
using which it tracks when code changes require rerunning a test.

• RBPolymetricView: Moose only does post-mortem analysis. Adrian
Kuhn has added its tools to the RB (“in VW; non-VW people vote for
me and I’ll port it”) to show code structure while browsing.

• The SmallProjectObservatory (SPO) is a web application that looks at
your Store database and shows what is there via visualisations: who
changed what and when, what are the dependencies, etc.

• PetroVR runs on VSE plus Gemstone (there is also a relational
framework; see Leandro’s talk below) provides discrete-event
simulation for planning 20 year projects to the petroleum industry.

• EyeSee is a programmatic diagram-drawing engine. You can script
diagrams well in 3-4 lines of code. You can customise every detail and
export the results as Cairo, use them in Seaside or whatever.

• Itrex is written in Dolphin by Tim Mackinnon. “Dolphin apps look so
good, they do not look like Smalltalk at all.” Itrex supports XP projects,
providing story cards, diagrams, etc., and cross-relating the data. Tim
is a former ThoughtWorks consultant: he wrote this app to replace the
spreadsheets used in some XP coaching.

• Rob Vens’ MijnGeld is a personal finance manager. It is open-source
so you can join the project.

• Bots Inc. (Squeak): see Stephane’s talk. It should run on the OLPC.
• EasyMorphicGUI: see Noury’s talk. It aims to connect visual GUI

programming to programmatic GUI programming.
Joseph Pelrine presented the prizes. (Joseph felt that the level of bribery
that had been offered him was far below what he had hoped for. :-)
• 1st prize (500 euros): The SmallProjectObservatory
• 2nd prize (300 euros): EyeSee
• 3rd prize (200 euros): Pier
Joseph thanked all the entrants for an impressive array of applications.

Smalltalk Summer of Code
Stephane introduced the summer of code and stressed the importance of the
mentor being either on hand or available to answer emails promptly. The
students made quick presentations of their work.

I missed one presentation, which was about working on a new compiler /
decompiler, with SmaCC compatibility.

Damien Cassou worked on Monticello 2, mentored by Stephane Ducasse.
He restarted Monticello development, enhancing its visibility and writing
documentation. He produced a GUI based on OmniBrowser to ease its
portability. [Niall: GemStone, amongst others, will be pleased.] He aimed

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 7
to make the actual repository MC1-like. He refactored and cleaned a lot of
the code. He posted a lot on blog.summer.squeak.org. He put links to useful
old blog posts of Avi and others, UML diagrams, and other documentation
on wiki.squeak.org/squeak/5642.

The model is nearly complete and has many tests. The GUI is open to new
features. Damien still has to reach main MC1 features. Then he will use the
new design to test new features (e.g. non-package-based features).

Juraj Kubelka worked on OmniBrowser Traits integration, mentored by
Stephane. He is now working on refactoring tools, mapping hierarchy-
oriented code to Traits. He is working on a tree widget. Put other requests
on the ob-dev mailing list. Find the work on wiresong.ca.

Squeak HTML/CSS was worked on by Jerome Chauvea. The details are
published on the blog. His work passed the acid test of web construction.

Oleg Korsak worked on extending Pier syntax, supervised by Keith
Hodges. Benjamin was supervised by Ralph Johnston. Another student
was held up by lack of mentoring; Stephane stressed that projects must
ensure mentoring will happen.

Q(Bryce) these projects have ended? Yes, summertalk ended last week.
The projects are not all finished; specifically, further work will continue on
the three presented here which are of interest to and integrated into the
Squeak community.

Squeak by Example book
The ‘Squeak by Example’ book (Andrew P. Black, Stéphane Ducasse,
Oscar Nierstrasz and Damien Pollet with Damien Cassou and Marcus
Denker) teaches Squeak and is full of examples you can select, execute and
explore. To avoid it becoming out of date too quickly, most of the examples
are SUnit tests. A Squeak application reads the book’s LateK and convert
the examples to runnable Smalltalk tests.

The book is open-source: they would really like people to contribute
missing chapters. It is available now free in PDF. It will be on Lulu.com
(print-on-demand) and available in all the other usual ways. Visit
http://www.iam.unibe.ch/~scg/SBE/index.html.

Applications and Experience Reports
Exploratory Modelling, Andreas Tonne, Georg Heeg
Georg Heeg ran a very successful project working with the SAP company.
They realised that the approach was what they always do, so Andreas
invented the term ‘exploratory modelling’ for it.

The Standish report shows that between 1995 and 2005, 50% of projects
were ‘challenged’ (fail in layman’s terms) and many were cancelled. In the
same period at Georg Heeg, 0% were cancelled and 5% were ‘challenged’;
the customer challenged them to do yet more and they did. :-) Andreas
listed some successful projects (see slide). These projects tend to be very

8 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
long lived and very resistant to being replaced, e.g. in Java. Why?

Georg Heeg captured requirements in good models (‘deep models’) that
could be iterated and added to, and that were robust to change: when the
way the system was used changed, adding new features did not force
serious model change.

Why is good modelling so easy in Smalltalk? You can map domain
concepts to code easily through powerful tools, lack of type specs, etc., but
no customer cares about this or even understands it. A model abstracts
something (in the real world, or it could abstract another model). You must
map things to the model, omitting some things and make pragmatic choices
so that the model is useful. Models are targeted at one or more receivers.
(Andreas showed three human anatomical models, one focused on
circulation, one on the skeleton, one on proportions, to exemplify this.)

Almost everything a programmer does - coding, testing, whatever -
involves creating a model. The programmer’s intent affects the model or
the view of it that is wanted, as does the receiver’s (i.e. the customer’s)
interest. The customer knows their domain (we assume :-). This is the
modelling scenario.

To most customer’s, modelling means UML or UML. UML is a good thing
carried too far (Niall: I would say a mediocre thing carried too far). The
customer cannot really understand UML models (as has been recognised
by e.g. Microsoft who are now going strongly towards domain-specific
languages). Smalltalk is a generic domain-specific language: concepts can
be expressed directly in the program and shown immediately. In Java,
changing one aspect impacts types, etc., so it is like throwing a stone into
a lake: ripples go everywhere. Smalltalk is much better at keeping changes
local. The result is a customer excitement level; more quickly than in other
languages, the model starts saying what the customer wants.

Andreas then spoke about the SAP project (see Rolf Ehret’s talk for more
details). Invoices are typically received by one person and paid by another
in a company. Thus it is easy for them to be paid twice through accidental
duplication. It is not an easy task to detect these duplicates.

The clerk says they compare two invoices; if they look ‘fishy’ (too similar),
they try to reclaim. Andreas described a typical conversation with such a
clerk about what fishy means and how they compare. They cannot compare
every possible pair of invoices, it would take too long, so they just look at
the interesting and potentially duplicated ones. But how do they know what
ones are potentially duplicated? A long discussion would end, “I use my
experience”. So how to model experience? Does this clerk know what he
is doing but not know how to express it, or does he actually use guesses to
supplement fuzzy rules? Whichever it is, he cannot offer a fixed spec.
Eventually he says, “Let me show you an example.”

Georg Heeg cannot build a useful model without continual reference to the
domain expert. Requirements are expressed as needs and examples. As

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 9
soon as you fix the unknown, the customer moves on. There is usually a
language gap in terms of what the developer and customer say: developers
take a formal approach, customers a domain-aware, informal one.
(Andreas showed two pictures of a lady in a hat, one old-style and one
cubist-style, as a metaphor for the customer and developer way of looking
at things.) So iteration must develop a common set of concepts. Customers
find UML very poor for doing this (Niall: I would say it is both too formal
and not expressive enough).

If the customer trusts that you know what their problem is then they will
stay with you through bumps in the road; if not, they will panic on every
possible occasion. So we need a modelling process that we can show
(prove) to the customer is doing something useful. It needs to be fast: no,
“Good point, let me go away and show you something on that next week.”
And it must be right, not just look good.

Exploratory modelling is Andreas name for using Smalltalk to do this.
Whitebox UML is too technical for customers. Blackbox prototypes are
not visible enough to them. Smalltalk lets us have our cake and eat it. The
xM cycle uses Smalltalk to implement the model and document the results
iteratively.

The concepts and class names should be the same, likewise for the visible-
to-customer methods. Make the model executable by adding an
experimentation environment, probably starting with workspaces and
developing what suits the customer. You experiment with the customer by
executing examples / use cases. Get immediate feedback and iterate.

Create model documentation: the implementation expresses the model
exactly. The customer may want more (UML diagrams, a document with
other diagrams, whatever) and you provide that.

This is not prototyping: the implementation must express the model.

You need a dynamic language for this that is non-technical, barrier-free,
scripting style, meta-programmable, concept-oriented and interactive. You
could use Ruby but Smalltalk has far better tools, etc.

The duplicate invoice analyser took three iteration cycles over 7 days and
acted on 170,000 real invoices. The first cycle just built their initial model
understanding: its 12 classes read invoices, compared everything to
everything and was hypersuspicious. Working with clerk experience and
looking at examples gave them a second cycle with much more detailed
rules and then a third cycle. They started finding real duplicates that the
customer did not know of, enough Andreas suspects to pay on their own
for that 7 days of work. The final model had customer-specific rules that
could be reused.

It is hard to explain to a customer who does not know Smalltalk why
Smalltalk is so good. They coined xM as a process modelling name to
apply to modelling problems that are hard, expensive and risky - even

10 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
‘unsolvable’. The customer ends up with a working executable model and
a document which is a design for implementation in any language. Thus it
is a good way to introduce Smalltalk that evades the ‘we implement in X’
problem. They can keep the model to evolve it further and if some part is
quickly changing, they may implement that part in Smalltalk. Thus xM
uses Smalltalk to give the customer well-verified quality models and gives
the customer reassurance early in the project.

Q(Rob Vens). Naked Objects is a development environment where you
only model domain objects; to a Smalltalk programmer it just looks like
you have souped-up inspectors. There is also domain-driven design (book
by Eric Evans, Andreas recommends it) and domain-driven development
(Andreas saw this as a much discussed rather broad concept so not ideal for
using to express the xM idea).

Q(Rob) Robust prototyping is a term used in Smalltalk, where we do not
throw away the prototype? Customer experts warned Andreas that the term
‘prototype’ means dirty and throw-away to the customer, so should be
avoided. But xM does throw it away? Yes (maybe), but xM keeps the
domain concepts and implementation in synch so it’s not just a prototype.

Q(Tim Mackinnon) How does this relate to XP? It is a small cycle so you
can inject it into any lifecycle. Andreas feels that pure test-driven XP can
produce too simple implementations that are not robust to serious change
so he recommends this modelling as a way to get the framework for XP
implementation. (Tim) Could you say this is the way to write story cards?
Object-Business Analysis was an old useful technique; this is a powerful
way of doing it. Yes, it could be a way of preparing XP cards, etc.

Q (Rob) In 2002, he presented on a large project where xM happened. The
system was then implemented in Java but even today some developers are
still using and evolving the Smalltalk model to understand the domain and
plan work.

Q.(Georg) Concept and ‘notion for concept’ are two different things. xM is
a concept, what we all knew to do with Smalltalk before we heard it is a
notion for a concept.

Capture Accurate Solution Requirements with Exploratory
Modelling, Rolf Ehret, SAP
Ralf has been a development architect at SAP for 9 years. He has much
enjoyed being at this conference in beautiful Lugano.

In software development, building to the wrong requirements is common,
expensive and undesirable. Andreas gave an excellent talk on exploratory
modelling. As John commented, exploratory modelling is what
Smalltalkers mostly do.

SAP develops business software for their 41,000 customers. Recently, SAP
has done two projects with Georg Heeg and Cincom. One concerned
detecting invoices that had been paid twice (or more). Another was

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 11
studying how to choose the right carrier for your shipping requirements.

Ralf works in the business process renovation team of SAP. Their target is
not innovation (SAP research does that) but near term (1-2 years)
renovation of existing business processes. They learn and brainstorm
existing processes that have problems and seek pilot customers to use
prototypes. The duplicate invoice project had several customers, the carrier
choice project was done with three customers.

Two years ago they decided they needed to build prototypes to do what
they now call exploratory modelling to explore solutions. They already had
done work on the duplicate analyser and knew their solution was not ideal.
At end-2005 they got one week of training from Georg Heeg in Smalltalk
and did a two week project with people from Heeg. There are three levels
of OO: knowing there are objects, using objects and designing objects.
When he met Heeg he learned a fourth level, that everything is an object;
he himself is an object. That was a new idea. :-)

They needed to get right what the model actually did rather than how it was
written up. ‘Must conform to all existing and upcoming internet
requirements’: what does that requirement mean in a document? What does
it do for you? Neither their own development language, nor Java, were
suitable to do this kind of rapid iteration of a model to get it right.

Recovering duplicate invoice payments is a multi-billion dollar business.
They built their own system using SAPs free text search engine, rules
engine, etc., and had a solution in one month. The customers they showed
it to were happy because it was the first time they had any system at all but
Ralf’s team were not so happy because they did not feel they had solved
the problem too well. They did not feel they understood the problem too
well. Practically, their system found vast numbers of false positives so that
its value was limited.

He opened VisualWorks and showed their first UI: not one they would
deliver to an end customer but one written in one and a half hours (a lunch-
break) and it showed everything they needed to discuss this problem. It was
an experimental playground. He showed tools that appeared (not very
much) later that eliminated 400 false positives and showed a real duplicate:
same vendor name, similar reference number, same date, same amount.

They realised they had asked the wrong questions. They had asked, “How
do you identify duplicate invoices?”, and the clerks could not explain. With
this tool and analysis, they began to understand that every rule they found
was pointing to a gap in the customer’s process. He then showed the real
UI: seriously more attractive and better structured. It showed lots of data
and the actual scanned images of invoices. (The display showed a faked
example as he was not allowed to show any real data.)

Iterating and showing it to clerks gave them a much better domain
understanding, a much faster and more accurate prototype. Ralf had never
had a project that hit its timelines. This one did not either - but it was the

12 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
first time it finished sooner, not later :-). They allocated 10 days and after
7 days asked each other, “OK that’s looking great, what shall we do next?”

Next they looked at the carrier selection application. Tylan worked with
them (very well; thanks, Tylan) on this. SAP has seven or eight rule engines
and clearly carrier selection looked like a rule-oriented problem but after
evaluating seven engines they failed as the customer asked for all
technology features, which no single engine had, because the requirement-
collection process ended up being driven by their own technology, not
really by the customer.

Hence they built a rule engine prototype in Smalltalk. Their first engine
version was working after a week and they were ready to visit the first
customer with it on their laptop after two weeks. He showed the UI at that
time; a window to edit rules, another to process rules on data. The complex
rule mathematics of rules in generic engines disappeared in the Smalltalk
prototype’s interface through simplifications oriented to the domain.

So having built the engine in two weeks they then spent two months
integrating to SAP via web services, which was horrible. So they and
Georg Heeg built Cincom Smalltalk VisualWorks SAP Connect (legally
SAP cannot let its name start with SAP :-) and it takes a fraction of the time
to connect any Smalltalk model.

The business customers ended up getting what they wanted, even though
they could not say what they wanted at starting.

The cycle in both cases is:
• exploratory research and modelling of the customers requirements
• discover and test heuristics
• rule systems
• enable fast customer feedback
• executable case studies
The team also asked themselves some questions.
• Does Smalltalk work for us? Yes (not yes but just pure yes)
• Does Smalltalk environment hinder in any way? No, far from.
• Do we still see overall benefit when you reimplement in SAP? Yes: for

a few days input we avoided implementing a large wrong solution and
then reimplementing it over a long time.

Q. How is the final document output to the developers used? The document
provided UML. The end-product developers were not always be able to
read Smalltalk easily but they used the prototype to see what their product
was supposed to do. (Andreas) SAP knows the distinction between using a
running app/prototype to guide implementation and reimplementing it in
another language. Accidentally implementing a Smalltalk interpreter in
ALA (SAPs language) while porting the prototype could be slow.

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 13
Honourable Squires, Uwe Leibold, Torsten Happ, AMD, Taylan
Kraus-Wippermann consultant from Georg Heeg
AMD make microchips, probably including the ones in your computer.
Taylan showed a picture of AMD’s site in Dresden, started in 1996 and
much bigger by 2007. In this period they have transitted very successfully
from 130nm through 90nm to 65nm.

Some 500 Equipment Interfaces handle the Factory Automation Systems
production steps, communicating with each other (via events on a bus) and
with the equipment each handles. The EI is a Smalltalk application. There
are some 50 types of machine, each needing a different customisation of
the basic application.

The FCS controls the production scenario, telling the appropriate EIs to do
the steps (the Manufacturing Execution System gives it jobs to do). The EIs
collect data and report it back to tune processes, to monitor, etc.

The application is called CEI Baseline, consisting of a framework for the
interface, config, event management and etc., the development tools and
the standard information for a standard machine.

Different forces pull the app in different directions. You want to expand
functionality continually but you also want to minimise restarts; any stop
to production costs greatly. You want to handle errors automatically but
you also want to minimise failure. This maps to developer concerns: test-
driven is good but you never get 100% code coverage. It is hard to ensure
behaviour is correct when the number of configurable influencing factors
explodes exponentially. Hence tests need to be continuously improved.
Doing that ensures that your errors are rarer, but when they occur, they will
be more complex to analyse. The production environment is not the right
place to analyse such errors so they need to reproduce them in their
development environment.

Their Remote Service Tool lets them monitor running applications. A
replay tool lets them rerun the situation. A Log-Viewer saves them from
reading huge ill-structured text logfiles. It also opens and closes zipped
files, and provides shared viewing to remote analysts.

Q. Synchronised time between applications? Viewer is per application.
Events are time-stamped.

The RST listens on the message bus so sees the events. It also has a limited
remote inspector (read-only, so production can be inspected without risk of
its being corrupted).

The replay tool is a ‘flight recorder for the Equipment Interface’. The idea
is that if you feed the same information in at a later time the application
should behave the same, which is not in fact true. Recording all data traffic
with external systems might give deterministic behaviour but would
generate huge quantities of data and it might take a long time to reach the
same error state from a known initial state. How should you simulate

14 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
internal processes of the device being managed?

The CEI connects to the MES, SAP, and many others. They intercept the
interfaces (MQ, SECS) to record the events (important that implementation
had minimal impact on the app). They write snapshots of the application
state to avoid having to record huge data volumes over long times.

Q. The state includes blocks? The data is protocol data so this does not
arise.

To simulate, they have to feed the data back by imitating the external
interfaces: they have simulators for TCP/IP protocols (virtual sockets,
CORBA-IIOP, HTTP and SECS) and for MQ series communication.

Q. Do this for 500 machines at once? Usually, one machine errors; we just
have to handle that one.

The Replay tool’s simulation component has a dispatcher to decide which
message should go to which simulator. Messages can sometimes get out of
order between the original and the simulator. The recorded events are
merged by timestamp and the simulator can apply time delays to its
dispatching to try and keep the order. Messages 1 then 2 may write answers
2* and then 1* in the recorded message stream. In the simulator, messages
1 and 2 are easily reconciled but the dispatcher could easily send answer
1* back as soon as it sees 1. From the recorded logs, the simulator sees
what delay it must impose to reply 2* before 1*. This time-based triggering
is deduced from giving prerequisites to messages: some come after others.

For this to work, messages must be reconciled. They have various
strategies: sequence ids, timestamps and (within a limited window span)
out-of-order messages. The user can use the tool to explore stretching and
squeezing the rate of replaying messages relative to the original, assigning
breakpoints, etc. They are still studying how to handle these out-of-order
messages; it is not a solved problem. There are other challenges: keeping
all recorded messages in memory has a huge footprint.

Currently, snapshotting is still in development, recoding and replay with a
limited number of interfaces is possible, and the simulation control UI is
ready to use. They find that acceleration can only be done by factors of 10
to 50. You might want to run faster, to reach the error state you are studying
faster, but some of the interfaces break. To enable recording, CORBA
needed 7 code changes, MQ needed 10 and HTTP OpenTalk needed none.

They would like to be able to edit production data.

Q. Timing your replays; you cannot compress unlimitedly? How much
time do you have to write the application snapshot? Wafer processing has
some millisecond processes during which you can exploit the EI’s time. A
machine may also be reserved (‘locked’) for known incoming production,
during which the EI may be available for a minute or maybe as much as 15
minutes. A real image snapshot would break some interfaces, e.g. SECS

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 15
has a heartbeat.

Q. How many messages? One per millisecond.

Q. Copy image and then snapshot; common in Seaside? He wondered if it
could be done with VW image. The image is 40Mb.

Q(Niall). Feedback error scenarios you’ve recorded to test-driven
development test style? Not thought of yet. (We then discussed offline.)

Q. Speed-up problems? Zero delay breaks some interfaces. Millisecond
delays are OK for all of them.

Q. Your app runs 24 x 7; any maintenance periods? You have to find the
right moment when machines are off otherwise (such times are very tight).

Q. Numbers of errors? he’s not in that team so cannot say.

Managing Business Process with Smalltalk, Janko Misvek, Eranova
Business and IT (still :-/) tend to see things differently. Business Process
Modelling Language is an approach to narrowing this gap. It uses a
graphical flow-like notation like UML activity diagrams (this was
published in 2004 by BMPI who are now called OMG, like UML).

The idea is that these models are executable. Some people (e.g. quality
control people) just model without executing. Human-centric people
model workflow. Integration-focused groups try to automate processes.

Janko started by supporting ISO9000 systems. He got interested in
executing them with a view to providing computer support and
measurement.

He looked at a pipeline example. The process models the measuring of data
about the pipeline’s state; as it is government-regulated, the attention to the
measurements and their assessment is highly formal. They used the Visio
program to draw the models, with a plugin (from Swiss company) to
prepare the process for execution. This is done by a ‘process engineer’.

The process execution engine is written in Smalltalk. It is a web
application. The end-user does not see that it is tied to the process, simply
that their web app tells them what task they are in, who is doing it, the
status, etc., which they can use in their day-to-day management and which
also keeps them ISO9000-compliant.

The product is called BiArt. It started as management of ISO9000
documents and now archives eDocuments (a new Slovenian law makes
these equal in status to paper ones), presenting a web app on the archive
and the current document set.

All this is built on Aida/WEB. Behind the Swazoo web-server, Aida
security and other utilities handle the output from Aida’s presentation

16 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
framework, which sits on top of the Smalltalk application’s own
presentation and model layer.

The BPM model is stored as XML, converted to objects in Smalltalk and
run by the BPM engine which uses events to communicate with monitoring
and other services.

Q. Client integrates your web pages with their ISO9000 data into their
internal management? No, they use it as a web service used by their
existing internal systems.

Q. Basic BPM-type models tend to be very constrained; is this easy to
extend? Their engine and model is easy to extend with properties.

Q. Typical time needed for on-site modelling customer processes? It can be
quite fast provided you understand what you are modelling.

SqueakBot: a pedagogical platform for educational robotics, Julien
Bourdon (Planete Science), Severin Lemaignan (Planete Science),
Serge Stinkwitch (University of Caen)
Julien has been a student volunteer at ESUG for several years; today he
appears as a speaker. Planete Science is a non-profit French organisation
promoting technical activities for young people. Each year, some 50,000
children are introduced to concepts by 1000 people like Julian in summer
camps that last for 2 weeks with 6 hours of science per day.

He teaches the idea of robots detecting their environment and then acting
on it. The programming language of such a project must be easy to learn,
in the children’s native language, and fun to use. (Q. Age? From 7 up to 13-
15. Usually, the children do not have a technical background.) Actually
building a robot needs much tedious hardware work, so they build from
ready-to-use electronic parts that can be programmed easily. There must be
a creative element; the children should not just assemble a kit.

They used LOGO but it only works on Windows [Kat: it is on some other
platforms], has a syntax to learn and is not Object-Oriented. Hence they
developed Squeak/EToys to use.

Super Module Electronique de Commande (SMEC) controls one or two
DC motors and 5 binary inputs. These can be interconnected via a I2C bus.

ASPIC controls 4 analog inputs, 4 servomotors (angle, speed, etc.) using
USB interconnection. He showed pictures and offered demos later.

So now we have the bits for our robot but a robot needs a brain. EToys is
one of the funniest (i.e. fun-est: most fun not most laughable :-) parts of
Squeak. You drag and drop to program. It is very intuitive so ideal for
children. You can start using Smalltalk syntax at any point.

Plugins are written in C using FFI with classes representing the bus
interface and the electronic devices. The smalltalk talks to the devices via

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 17
these plugins.

He showed a mars-rover-style robot built at a summer camp. Another
group built a walker (reminiscent of Star Wars robots) which didn’t work
(walking is difficult) but the kids learnt a lot. A third example was a
caterpillar; a video of it is available on the web). An intruder-detector robot
took pictures of anyone approaching close to it; the kids also used EToys
to calibrate the sensor.

EToys gives fast results that keep the children motivated; imagine if they
coded for two weeks and just saw ‘segmentation fault’. This is part of a
larger project called ‘Boite a Bots’.

They need to make all this work on Mac and Linux. They also want to test
this work in a larger audience, e.g. in schools. They plan to do this and hope
next year to will have a success story to tell. Links on slide:
http://www.squeaksource.com/SqueakBot.html and two French sites.

Q. Can you buy the hardware? Yes. It is all in French and some things are
unfinished. (All in French? EToys is available in English, German and
Japanese.)

Q. Any use of Lego Mindstorms? No, we make the children start from
scratch. It teaches the kids more. (Lego Mindstorms demo was offered
offline.)

Q. You do it all? We also train trainers so it can be used more.

From One Tree to a Forest, Alfred Wullschleger, Swiss National Bank
Fifteen years ago, Alfred wrote his first tree structure. The tree(s) have
grown a lot since then. He showed the Swiss National Bank application
with a tree of the data in the left pane and a node-specific window for
editing a given selected node in the centre right.

He then created an example tree for the ESUG conference. The conference
root node has some participant nodes. He added another participant and
developed that node with a ‘where he was sleeping’ (in the barn :-), what
talk he was giving, etc. He added titles to define the node and offered help
on nodes (sleeping in the barn explained what that would be like :-). The
user, not the program, creates the nodes, configures their ‘types’ i.e. titles,
etc., and adds the help, etc. Various renderers present the tree data as
formatted text or whatever.

In 1993 they added help trees to the basic trees (because on Windows then
you had to compile strings to use windows help so their users would have
had to ask developers to compile their help strings). Alfred later switched
from his previous company (OVID) to SNB. (Claus then also worked on
the system.) The major change was temporalisation circa 2001. He showed
three ESUG conferences with time ordering. This was important because
banks are always changing their names and merging and whatever. (In
OVID this was not an issue.)

18 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
Next they added delta trees; trees to apply changes to trees. He morphed a
participant via a delta. He added ‘middle name’ (type String) to the ‘first
name, last name’ participant node structure in this delta. After saving the
delta (Gemstone provides their persistence; he is saving to Gemstone), he
then (showed us that no validation was relevant at this stage - see below -
and then) transformed the tree by applying it in the delta transformer (very
fast as it’s a very simple change): all the participants now have middle
names. (Standard layout; the UI layout can be configured).

Q(Georg) So this is a schema migration triggered by the user? Yes.
Typically the end-user does not do this casually. Normally they agree
changes, test, then transform 10,000 trees. They recommend end-users not
to transform in production before going through tests.

The tree algebra lets them combine and reuse elements. They define tree
homomorphisms for various reasons, e.g. to map their structure from the
most user-friendly to one easily mapped to an external relational database.

In 2007 they added validation trees. He showed a tree that checks that all
participants have accommodation. Two nodes (‘is hotel element’, ‘is barn
element’) are ORed in the containing node to warn if a participant seems
to have nowhere to stay. Now we no longer get told there is no validation
information. Instead we see errors, e.g. a time error on participant 4 ‘the
presentation is not within the presenter of the conference’ because he was
presenting in October which is too late, and warnings e.g. a warning that
participant 3 has no accommodation (just a warning because maybe they
live in Lugano and don’t need accommodation).

Q(Christian) Can you make accommodation optional to suppress the
warning? Adding a title ‘lives in Lugano’ would remove it. Suppose they
don’t want to do that. They and their customers have recently had detailed
discussion about whether warnings should be hideable or not.

It took them 3 weeks from their customers request to add validation trees.

Lastly, he showed an actual production tree of data coming in from the
banks. This data must be validated in many ways. He selected one
validation and displayed it in the tool. He generated a test tree for the
validation with generated random data. He showed running the validations
and having their results put on a stack. Users (not them as developers)
understand what these validations mean. (On the random data, some
passed, some failed; one would use this to verify running and then move on
to testing on real data).

A major advantage of Smalltalk is here shown: in 1992 he coded trees and
still in 2007 he is able to use his old code. In Java he would be adding new
types and that would force revision but not in Smalltalk (move of company
and dialect from VSE to VW forced nominal rewrite but it was the same
really).

It’s important that the configurer does not override trees that are in

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 19
production. A checkin-checkout mechanism controls this and this same
mechanism applies to all trees.

Q(Georg) When Georg was young, there was discussion about relational
databases, network databases and trees. People said trees are excellent as
long as there are no network requirements. You have none, or you solve
(how)? They have network requirements and they solve them by references
which are like URLs. It is not a heavy network.

Q. Validation trees; you can have different semantics at different times?
Yes indeed; the validations are temporalised (just reusing the feature) and
the validation requirements do indeed vary. Messages from banks always
have reference dates. Validation trees have to provide similarly a date
related to when rules applied. They do this by adding fixed dates but they
would like to provide dynamic date intervals.

Q. Is the validation linear or exponential in terms of the rule complexity?
Linear in the size of the tree for their individually-fairly-simple rules.

Impromptu demo of CMSbox: the Netstyle Content Management
System, Adrian Lienhard, Netstyle
By popular request, Adrian demonstrated Netstyle’s content management
system. It has been developed for 1.5 years by Netstyle in cooperation with
a guy who does user interface design; he gave some of the concepts and
Netstyle had the ability to implement them. The new company that will
exploit it is called CMSbox. Systems like typebook 3 are really complex to
use because there are hundreds of options and it can be hard to figure out
how to change the content of the web page. CMSbox has two views, the
page and the different view of the editor where you edit that page. They
bring this together.

He logged in (clicked bottom button, it scrolled up). You click on text and
you edit it in situ. You can drag an icon, and drop it in a new place.

Q(Bruce) when is it saved; immediately? When you press the publish
button. You can also save without publishing, defer publish. The menubar
gives you all the icons (text link, etc.) of the various widgets: you select and
add to the page. You can link within the page, to others, to external. He
selected pictures and enlarged them, shrank them. This is not just extending
the size, it is scaling the picture to keep the quality. Pictures can be styled
(with boundaries, etc.).

The toolbar is part of webpage; there are no plugins.

He created a form, selected text boxes and set style, then made a dropdown
with 4 options and added them.

Q. Where did you specify the identity of that form? That is just normal
Seaside. The default effect if you submit is that an email is sent.

He showed an undo.

20 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
Q. Version control and undo? We have sessions and the undo is within a
session. Published pages are versioned; you can see the page of e.g. 20th
of last month, etc. You can go to an old page and see it, copy and paste from
it. He showed the calendar to select by date the page-version of that date.
Immediate persistence is achieved simply by saving the image; they could
talk to Gemstone.

Q. Browser compatibility? They work on that. Of course you can
sometimes get an issue just as with other web apps.

Searching your page and site with the usual abilities is there. You can
automatically generate PDF.

Q. Search-engine friendly, e.g. google? They have done work to offer nice
URLs with single h1 tags (search engines can deprioritise if you have more
than one h1 tag). They support nice XHTMLs.

This is the Seaside-based CMS for stuff to be served by Seaside.

Q. You can have seasonal and other dynamic mixing strategies. Is this
supported? Not supported; you’d have to add it with a bit of Smalltalk
programming.

Q. Backend to other CMS systems? Not yet but to do (RSS and so on).

Their business model is to provide the whole solution and the hosting (for
prices, see their prices page), not a system modified for a specific user, but
they could talk about supplying a fork of their code to a user who wanted
it to kick-start the Seaside front-end of a specific system.

Q(Georg) Multilingual web presence? They support this. The underlying
mechanism is to have a different tree for each language. The content
provider, having created pages in the primary language, copies and
translates them. (Georg mentioned the WebTCM system. He will email
Adrian the WebTCM reference and I will email its write-up to him.)

There is an English language version. It will be released at the start of 2008,
not before. They are determined to grow at a sane rate in Switzerland next
quarter to have the right base for going international.

Q. Mix with outside stuff e.g. other Seaside hosting for a widget in a page?
This is not yet done but is on their plan. (Discussion with Monty.)

There is a video to use for demo purposes and they would make a sandbox
available to demo-ers under suitable conditions (email Adrian).

Application Frameworks
Seaside, Lucas Renglii, www.lucas-renglii.ch
At the last ESUG in Prague, Lucas gave two lectures: 10 Steps to Mastering
Seaside. Then the old rendererClass was still the default. Since Seaside
2.7, the old renderer class is deprecated and the new is the default. (This

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 21
potentially broke old legacy code so Seaside 2.6 remained as a little-
changing version for some time.) This replaces e.g.

html anchorWithCallback: [self doIt] text: ‘do it’.
with

html anchor callback: [self doIt]; with: ‘do it’.

They also made the canvas use the same canvas API for <head> as for
<body>, e.g. html meta name: ‘generator’ content: ‘Pier’.
The developer toolbar now warns when you call deprecated code.

Many people complained that serving static files was cumbersome in
Seaside but people wanted the programmatic control of it so e.g.
html stylesheet url: PRFileLibrary / #mainCss

but of course they still recommend you use Apache or similar to serve large
static files.

Avi was already busy with DabbleDB and only had two major commits
into Seaside 2.7. Michel Bany ensured the portability to VisualWorks and
the rest was done by Lucas et al. Seaside 2.7 became the standard.

Next, they redesigned the website; the new one was released in 2007. It
runs in Pier which runs on Seaside. This made it very easy to integrate
examples directly on the wiki pages, hosted by www.seasidehosting.st.
Morello (web designer), in many iterations over two months, created the
new Seaside logo and the new page look. The news component aggregates
some well-known seaside blogs.

Q(Bruce) Interesting you picked almost exactly the same colour scheme as
OpenSkills uses, which is good.

The example applications show both the effects and syntax-highlighted
source code. Pier can be told that something is Smalltalk source code so
that it automatically annotates it by div so it can be styled by CSS.

He showed a map constructed from google analytics that showed from
where in the world people visit Seaside.st. (Finland may just indicate that
Lucas went on holiday there soon after release and frequently checked it
was still running.)

A slide showed a long list of who contributes. There is also a silent
community of people subscribed to the seaside mailing list. The numbers
doubled from 400 to 700+ in the last year.

That is today. Tomorrow is Seaside 2.8 (some 2.8 versions have already
been released). He showed benchmarks of Seaside’s evolution. Kent Beck
claimed that having between 0 and 1 percent of comments was not a
problem but Lucas does not agree. Old Seaside was ill commented and
some mailing list emails were longer than all existing Seaside comments.
He showed Seaside class comments by version: 2.5 had 29%, 2.6 had 41%,
2.7 had 39% and 2.8 had 99%. Method comments have also greatly

22 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
increased (but not to 99%). Seaside 2.8 jumped unit tests from 44 (in 2.6
and 2.7) to 131.

Memory: he loaded the same complex application into 2.5, 2.6, 2.7, 2.8,
clicked through it 10 times along the same path and measured the
backtracking and state memory footprint. 2.5 had 170kb, 2.6 had 193kb,
2.7 had 204kb and 2.8 had 48kb with no loss of functionality. You can let
your sessions live 4 times longer, serve 4 times as many hits or just buy a
quarter as many machines.

Rendering is a similar story. Benchmarking how long to write the last byte
to the socket is in 2.5 90ms, in 2.6 90ms, in 2.7 94ms and in 2.8 51ms.

How were these improvements obtained. Rendering was just not as
efficiently coded as it could be. Memory has a more efficient backtracking
algorithm that avoids unnecessary stuff. Some poor configurations were
also removed.

In 2.8 the old renderer is not there any more. They added development tool
plugins. Especially when porting to VW, they found that many plugins
were not cross-dialect and other plugins were not backportable (and
sometimes were implemented in bad ways) so they built a new plugin
framework. You can use plugins to extend the halos too: the class name in
a halo is now a plugin, etc.

Backtracking of state. In old versions:
initialize
super initialize.
self registerObjectForBacktracking: model.

backtracked a component for the whole lifecycle, even if it was not shown
any more. Now they control it better:
states
^Array with: model

In old Seaside, URLs were sometimes strings, not always first class. In 2.8,
the URL class is used everywhere possible. Streaming is also improved.

Seaside 2.8 beta is released today, one year after starting 2.7 and half a year
after releasing 2.7. Beta means it is now feature stable. The remaining bugs
will be fixed and the final release made as soon as possible.

Seaside was developed in Squeak where it runs very well. There is also the
Squeak Kernel Image (note new logo on slide to indicate that Kernel is
minimal) which will run Seaside and Pier; use it if you have memory
footprint concerns. Gemstone runs it (see GLASS talk) and Cincom
VisualWorks now officially support it (good ports from Michel Bany have
been available for years but now it is official). GNU Smalltalk will have it
soon. VisualAge expect to support it in their next release. Dolphin support
Seaside 2.6; they would be happy to hear from people willing to port 2.8 to
Dolphin.

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 23
Seaside commercial people are too busy to come to conferences but he has
two success stories: Dabble DB (Avi Bryant and Andrew Catton et al) and
netstyle.ch.

Christoph Wysseier, CEO of Netstyle, then presented. Netstyle are one of
the first and most successful Seaside companies, thanks to Lucas. He
showed an art content management site and an insurance broker site. Swiss
juniorwebaward is a school web app building contest site; this is a Seaside
and AJAX site. They’ve also done a workflow management system for a
Swiss site and a business card creation system.

From his experience he very strong recommends use of Seaside. He has
used it to create a wide range of apps for very different customers. They get
higher quality at lesser expense than rival frameworks. Their clients are
very happy. (End of Chris’ presentation.)

Seaside 2.8 is already being used in production. There are a few bugfixes
needed as known. What will Seaside 2.9 do? The architecture at the
moment is the application code sitting on the large block of Seaside with a
little Javascript sitting on the web server. For 2.9 they will split Seaside into
several packages: a Seaside Application Server will support Platform,
Core, Tests, Examples, Javascript and other packages.

They are looking for website maintainers, documentation writers and code
content contributors.

The T-shirts can be bought from the online shop seaside.spreadshirt.ent

Lucas Streit wrote a flash generator for Seaside. Lucas demoed subclassing
WACounter to FlashCounter. html flash: [:flash | ...]. He
opened the browser and showed flash behaviour (zooming in and so on)
with all the usual Seaside behaviour. This will be developed further.

Q. Licence situation? MIT licence with names Avi, Philippe, Lucas and
one or two others. Do what you want except remove the copyright notice.

Q(Bruce) How has use of continuations evolved in Seaside? Old Seaside
used continuations a lot in the render loop. They have realised these are not
necessary; they are still used but they are no longer stored. However the
remaining continuation use is essential to the functionality. If you remove
them it remains useful but you would lose call: and answer:.

Advanced Object-Relational Mapping with GLORP, Alan Knight,
Cincom
“Unlike my previous talk, I am now discussing stuff I do know (a great
deal) about.” Alan used a motivating example, the Ruby-on-Rails Active
Record pattern, to explain what GLORP can do, both generally and in a
Seaside context. GLORP can read database schema, create mappings
dynamically, etc.

Ruby-on-Rails is opinionated software. It emphasises certain patterns and

24 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
conventions: you can go fast but only on the rails. It is a reaction against
heavy systems like J2EE. It fits greenfields projects best since for example
it insists you organise your DB schema in a given way. It has tricks that
Smalltalk programmers will recognise. Its two big pieces/patterns are web
presentation and database handling, the latter being called ActiveRecord.

GLORP is very different from ActiveRecord. Ruby-on-Rails uses naming
conventions, tied to English language forms, and very little and trivial
metadata. GLORP uses metadata declaratively. RoR uses code generation;
GLORP does not. GLORP has a single broker that manages the cache of
objects and which is very un-dependent on other frameworks such as the
web. RoR has no brokers or caching and no identity (ask for an object twice
and you get two objects; going from parent to child back to parent gets you
a new parent object). RoR’s session and transaction are very global.

GLORP has no (necessary) metadata on domain classes. Its typical use
case has an existing, maybe hard to change, schema and (different) domain
class model. ActiveRecord puts such metadata as it has on the domain
classes and the database has to fit via the conventions. RoR tries to deduce
foreign keys but the DB knows what are FKs and GLORP just reads that.

Alan would like to get the benefits without the pain. He wants to have a
quick set-up convention which he can then modify incrementally.

Before we can automate we have to read the DB schema. DBs have their
own standard (i.e. different on each DB) way of holding their schema. This
data is in tables and GLORP can read these tables so it is very simple to
have ‘meta’ mappings to an object’s DatabaseField. The only hard
mapping is isPrimaryKey which is a boolean in Smalltalk but is
determined by, ‘Are there constraints of type primary key referring to this
field in the appropriate DB table?’ in the database:
(aDescriptor newMapping: DirectMapping)
from: #isPrimaryKey
to: [:each | each primaryKeyConstraints notEmpty]

(where each is the key we’re referring to and primaryKeyConstraints
needed a full-page slide to show its 4-part composite subselect).

A lot of things that look like collections in Smalltalk turn into subselects
when mapped by GLORP to SQL.
read: Customer where:
[:each | (each orders select:
[:order | order amount > 1000]) sqlCount > 5]

(where sqlCount is the only difference from ordinary Smalltalk).

This reading of schema works for Oracle, PostgreSQL and MySQL at this
moment (others being added) and needed no changes to the domain model.

GLORP metadata lives in descriptor systems in methods of two types: one
kind defines what a class looks like, the other what a table looks like. So
for the schema stuff, he can look for a class whose names and structure
looks like it matches.

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 25
RoR use an inflector that knows how you pluralise and singularise words
(so it will map a class called Person to a table called PEOPLE). The
inflector is just a big ball of 40 regular expressions so Alan just ported it to
Smalltalk (one Regex that Vassili’s did not support he had to work around).
His utility supports customising the table name to a more user-friendly
class name. It generates a package with a class for each database table and
an empty descriptor system.

Incremental set-up uses a deferral mechanism. Mappings can be tweaked:
self mappingNamed: #bankCode do:
[:mapping | mapping type: Integer]

(and you can similarly change e.g. the regex-found default names). This is
post-hock: it runs the block after generation.

Rails Migrations help you migrate from one version of your schema to
another, running upgrades sequentially to go from e.g. version 35 to
version 42. Rails supports some data transformations.

Alan uses subclasses (but you can do it otherwise) to map schemas from
old to new (see e.g. the StoreGlorp descriptor class hierarchy). He also
wrote a utility to update schemas as a proof of concept - he has not yet
added data mappings.

Alan looked at Ramon Leon’s MagritteGlorp (generate Glorp from
Magritte) but instead generated Magritte from Glorp, which means you
don’t have to write any meta-data at all. This code is in the Cincom open
repository in package GlorpActiveRecordMagritteSupport.

Q(Niall) Others will want to use and develop this both in Seaside and also
in data/schema migration work? Yes. Look for *GlorpActiveRecord* in
the public repository, and use blessings and comments to show the status
of any increments you publish to help Alan integrate them back into the
main branch as and when appropriate.

Q. He used GLORP recently on database of bug reports from Mozilla. He
just wanted the comment report field but he found a large footprint for
loading all the table columns into objects. Can this be avoided? Use the
retrieve: method to have GLORP retrieve values only for those
columns you choose.

Q(Georg) There were ideas to use Gemstone as the backend to Store. Can
GLORP migrate an OS database to Gemstone? I and others participated in
the follow-up discussion. James Foster has already done some work to let
GLORP fake an RDB appearance so that Smalltalk utilities expecting that
could be quickly ported. Migration could certainly be done. Arguably the
main requirement is a business case, or someone motivated to just code it.

Post-talk demo: GLORP schema-reading, Alan Knight, Cincom
Look for the GLORPActiveRecordDemo package and trawl through all
GLORPActiveRecord* pundles in the Cincom OR for more. Do
ActiveRecordDemoWorkbook openExample

26 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
The pattern sets up descriptors for subclasses of the defaultRootClass (by
default, ActiveRecord) with very little code. The login reads the metadata
from the database, e.g. Oracle, then constructs a fairly direct mapping. The
reading is (not very) lazy because descriptors validate and the validate will
almost immediately kick off more reading and descriptor system creation.

Oracle has a standard human resources database demo. You tell the
Inflector whether to use plurals but it will still search for the singular if the
plural is not found in the table names. The example uses the tables in the
HR schema. The result is HRPackage.
anActiveRecordDescriptorSystem
createPackageName: ‘HRPackage’
forTablesWhere: [:each | each schema = ‘HR’]

This creates descriptors. It does not write and compile descriptorFor*
methods. It will accept overrides: if a matching descriptorFor* method
is already there, it uses it. It would be easy to add behaviour that walked
these descriptors and generate their creation methods using storeOn: as
a kick-start to conventional use of Glorp on an existing schema.

The MetaDataDescriptorSystem shows how meta-reading is done. There is
also a MetaDataWorkbook menu item. To apply this to a new database, it
might be best just to copy the MySQL implementation and fix anything
that did not work. A diagram of the MySQL info schema is on the web
somewhere; google for .../MYSQL_INFORMATION_SCHEMA.html.

Ballooning with Cairo, Travis Griggs, Cincom
(Travis passed round two sticks, one of them mine, of the PDF of his
Smalltalk Solutions slides. which were almost the same as his ESUG ones,
to help those at the back see the detail.)

In 2003, Travis presented the ExtraEmphasis utility. He wanted better fonts
for Linux, so went via XFT and FontConfig to Cairo, who told him to use
Pango. Travis wants graphics programming in Smalltalk to be fun again.

Cairo is an open-source equivalent of the Mac graphics stuff. There are
many graphics library backends, many platforms are supported and there
are many language bindings. There are also multiple users: mobile phones,
Firefox, Adobe’s Apollo, etc., and Sophie was playing with it for backend
rendering.

He hopes in time to ship the libraries with VisualWorks; see slide for how
to get it today. Cairo is good about keeping backward compatibility of APIs
and this is good as DLLCC when updating tends to overwrite your hand-
tuning. Enums are represented as Constants subclasses, for example
CapStyle butt == CAIRO_LINE_CAP_BUTT. This is where Ruby et al
stop, obviously interfacing to C. Travis wanted, e.g. moveTo: aPoint
and moveToX:y:. To keep Cairo happy (it knows nothing of keywords)
sometimes things are not as Smalltalk-style as they might otherwise be.

dllccDouble is used a lot as almost everything in Cairo is a double; they
don’t use floats much.

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 27
The first thing you do in Cairo is create a surface, in formats a1 a8 rgb24
rgb32. You can do this wholly in Cairo (it manages the bytes):
ImageSurface format: CairoFormat argb32 extent 100@100.

or by creating a ByteArray in fixed space and telling Cairo to use that.
Pixmap surfaces are longlasting but you should recall the cairoSurface (to
synchronise: pick up bounds and etc.) every time.
aWindowOrPixmap cairoSurface.

(Brief excursion to DumbJack dungBeetle; at 01:00 today, he found a
problem generating PDF surfaces; there is a problem there!)

When you have a surface, you then create a context (often abbreviated as
cr or aCR, because for some reason they do not call them contexts although
they admit that’s what they are), obtained by aSurface context. This
is like a GraphicsContext but it has more state, its shape. You can map any
GraphicsContext to the equivalent cairo context.

Cairo has some ‘verbs’ which you can apply to a stroke of a path, cleared
at the end of the stroke unless you explicitly preserve: paint, paintAppha,
clip, fill. He showed a VW and Cairo slide, showing how Cairo’s infinitely
thin lines avoid fill overlap in thick boundaries of filled shapes. Unlike
VW, you put in your shape and then invoke a verb to actually display it;
forget this and you can go mad wondering why it did not draw.

The source of a context is a pattern, (aCR source) which is a solid colour,
a gradient (linear or radial, and it can reflect at boundaries), etc. Travis has
promised to do a contour gradient for Cairo if noone does it first. Just as we
all caught font-itis when fonts first appeared, so Cairo can have the same
effect on you when you first see all the things you can do with it.

You need at least two beziers to define an arc so they have helper methods.
You can exploit the fact that they will drag the path to the start of the arc.
Drawing a rectangular path is not the same as drawing a rectangle; the
former gets two close caps at the joined location.

Paths are built via connect the dots: moves, lines, curves (all bezier
quadratics - the wikipedia article has a great animation and explains well)
and closes. Paths can be disjoint and are infinitely thin, not 1 pixel wide.
Paths must be closed to be filled and must be done explicitly: a path not
declared to be closed can return to its start point but it will be unfillable.
Paths are pen-down moves: lineTo: or relativeLineTo:.

His slides are rendered by getting the path of the font and then stroking it
which is not your typical font package approach.

Enumerating over paths is tricky as the various elements are so unlike:
moves, lines, curves and closes. They wrote a case-like method as the
easiest way to express an enumeration. He showed a few lines of code to
render the Norwegian flag colours fitted to the Cincom logo.

28 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
Filling and Stroking in VW would take a top left and bottom right where
the fill omits the latter point as VW lines are finitely thick/thin whereas
Cairo’s are infinitely thin and your rectangle gets filled from the very top
left point to the very bottom right point.

By defining subshapes backwards (anti-clockwise as against outer fill
shape clockwise) you can have complex cutouts drawn via a single shape.

Cairo is a different way of drawing in which you can apply affine matrix
transforms for everything (“use the matrix”). This is good for doing e.g.
translate to centre, rotate, translate back in a single operation.

Rotating and scaling in place has to be done in the right order; naive coding
can just make the shape disappear. Applying a transform just before
stroking can give a subtle calligraphy effect.

You can temporarily create another surface and retarget your contexts to it.
This is a form of grouping and/or double buffering: draw to your group
then display it when done.

Cairo has a ‘toy’ text API, which they prevent people using too much by
refusing to answer questions on it and saying pango, Pango, PANGO to
anyone who asks; he ‘got it’ eventually. He wrote a minimal Pango
interface for some slides; raw Cairo was too tedious. This is faster but
because it is so powerful you will soon use up the extra speed so as regards
the final result it is not necessarily faster but a lot more attractive
(Joachim’s train simulations look much better but run at the same speed).
Travis likes using the new API so does not want to provide a compatibility
layer from the old VisualWorks methods but maybe someone will.

He demoed the new (non-Cairo) Refactoring Browser’s test tools and
progress bar. Yesterday he did a Cairo version: it has cool radar circling,
waves across the bar, throbbing when failure, etc.

The first thing a newbie to Cairo is told to do is build a clock so he showed
his clock (usual demo hiccough: he had to switch to Motif and then had to
make it display on screen). The clock could be made to rotate in various
axes, become an orrery (i.e. a clock orbiting in a clock). Michael did two
clocks; a chronometer where the hand never moves, instead the numbers
rotate round, fading away when 180- degrees from the hand, and a Dr Who
clock (not very useful for telling the time; I suggested you were meant to
believe you had moved to another time). He also showed the screencast of
the stock graph example from his blog: glowing line, years as bookend
curves, selection brightens selected area and fades the rest, etc.

Q. Any printing suggestions? Just postscript or whatever.

Q(Georg) Any relationship to Widgetry framework? No. Widgetry and
Wrapper both use graphics contexts so you use it with either.

Q(Georg) Cairo is written in? C.

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 29
Application Frameworks: an Experience Report, Arden Thomas,
Cincom
Suzanne introduced Arden as the new product manager for Cincom
Smalltalk. James Robertson, who proposed this change, is now the product
marketing manager and will be growing yet further his blog, screencast and
other high-visibility-for-Smalltalk activities.

Like the last speaker (John O’Keefe), Arden started in Smalltalk in the 80s,
and worked for IBM for a while (not such a long while :-). He also worked
at ParcPlace. In 1999, he went to work for a Hedge fund in Connecticut and
in fixing things he needed an application framework. The chance to build
a framework is wonderful opportunity but if you ask your manager how
much time you can spend building it and they look at their watch, that is a
bad sign. In effect, he was not authorised to build one but he was authorised
to buy one. So he had to think about what makes a good framework.

A framework should make things easier, simpler and clearer. It should also
not make it difficult to go beyond the box in which the framework makes
things easier, simpler and clearer. In the early ‘90s, Tim Howard wrote a
book that explained DomainInterface. Steve Abel (who, with Adele
Goldberg, built LearningWorks) built the ValueInterface (inspired by the
slamdunk architecture). These frameworks both had a single domain: the
ValueModel has a single domain object. They both hide things:
ValueModel hides additional instance variables in the builder so that the
ApplicationModel is not cluttered by them.

ValueInterface extends the ValueModel idea to ApplicationModel. This
makes it easy to connect widgets to the domain and to react to domain
changes. It also makes it easier to reuse applications. (nameChanged will
be run when you change aspect name - issue when refactoring?) He likes
ValueInterface for some of the same reasons that he likes Smalltalk. It is a
simple concept consistently applied that is more than it seems.

Locality of reference - putting similar things near each other - is a value of
a good framework. Arden prefers to put his initialization methods in an
initialize method rather than in many lazy accessors because the former
gives locality of reference. [Niall: I think the same for the same reason and
also for locality of time. Only when locality of initialisation time is not the
correct thing to aim at for domain reasons, as opposed to a side-effect of
poor coding, am I happy with lazy accessors.]

A ValueModel is a model from which you can get information via a simple
interface (value, value:) with dependency notification. Arden talked
through examples of how the ValueInterface, ApplicationModel and
domain object relationships allowed localising changes for various reasons
in basic VisualWorks code and in Tim Howard’s framework. Arguably
these are examples of the rule: “You can solve any computing problem by
adding a layer of indirection.” :-)

ValueInterface pulls up the value, value: interface to your application,
allowing much more pluggability between the layers. The value, value:

30 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
calls can be to blocks that recompute, to buffers, to many things besides
mere data holders, and can be to other value holders and so on.
ValueInterface makes it easy to connect widgets to the domain, to react to
domain changes and to reuse parts of the application.

Steve Abel was surprised that this framework was not used more widely
than in Smalltalk.To someone who does not know Smalltalk, starting by
explaining meta-class regression would not be the way to explain it (or not
if you wanted people to think Smalltalk was simple). Arden suspects that
ValueInterface explainers made the same mistake, trying to explain the
fundamentals of the pattern first instead of showing what it could do first.

In the hedge fund, Arden extended the framework for the application,
allowing mathematical expressions to be put in the aspects, prefixes (my
name, my phone modifying aspects name, phone) and deferred messages
(c.f. similar pattern in Widgetry). He opened VW and showed some UI and
code examples.

Q. Do you have to wrap each item in a collection with a ValueInterface if
you return a collection? There are two approaches. You could make a List
your domain but it can be more useful to make what is selected in a list your
domain. He showed a SelectionInList example:
initialize
self databaseModel list: TradingSecurities all.
self broker: self selectedRow.

where the broker domain object is tied to the selection in the list.

He also discussed changed: #aspectChanged and its counterpart
update:with:from:. Implementing the method aspectChanged in
your domain means no specific update:with:from: is needed. You can
provide hooks such as MyApp in: AnotherApp to connect all these.

The void object is like nil except that it disregards messages it cannot
understand. [Niall: this is the message-eating pattern of which there is
much debate whether it is good or bad. It can make certain types of code
much neater but by deferring when you see an error it can make spotting
and fixing errors harder. People have a variety of views.] Arden
commented that you should not overuse this pattern. We discussed this:
Arden said one of his rare uses was when he had to allow for access via
some external interfaces that might provide nil so void kept his code clean.

Q. Adding these ideas to Widgetry? He has starting doing so. He observed
that you can generate a lot of Announcement classes to handle changes and
he thinks he can shrink these again.

Vendor Reports
What’s new in Cincom Smalltalk, Alan Knight, Cincom
Alan’s most important job is soccer referee but in his spare time he does
Smalltalk. Alan’s official title is now ‘lead technical architect’ so he gets
slightly involved in many things he does not wholly understand as opposed

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 31
to working on a few things he understands very well.

ObjectStudio 8 is shipping Friday. (Long ago, a much earlier version of
ObjectStudio was what Jack Sutherland was working on when he
originated Scrum.) OS8 has the VW class libraries but looks like OS to OS
users. It has the OS GUI - windows native widgets - but the much faster
VW VM (OS’s was pretty naive) and all the VW libraries and utilities.

OS was probably the most divergent from VW of all the Smalltalk dialects
so the integration had many technical challenges.

There were semantic changes, e.g. at:put: returns self not parameter in
OS; Alan found 30 places just in the Glorp port where this matters. In OS8
at:put: returns self for OS code and parameter for VW code in the same
image. OS classes live in a separate namespace and use a different compiler
which just does sophisticated handling of code and then hands over to the
VW compiler. File handling also differed.

OS8 uses the VW RB and debugger because those were simply better but
it retains the OS inspectors where the users preferred them. VW Web,
server, networking and database libraries are now available to OS users
(and Cincom now only has one set of these utilities to maintain, which they
are happy about. :-)

VW users also have gains. VW windows-only users now have native
widgets if they want it. Vista-certification is pending (getting certified is an
interesting exercise). OS also gives them COM and Active X support code,
and legacy database connects to APPC and EHLLAPI.

Virtual machine work: Mac work is the most active area (because it most
needed it, as Mac owners can testify). VW7.5 supports Intel Mac OS X.
Alan uses Macs a lot and has few problems but he does not do much heavy
graphics stuff; he is aware that those who do have issues. The Apple VM
has had two native OS threads, one for UI/OS calls, one for running
Smalltalk code. This has stability implications - can get race conditions -
and the general issue that Apple is not built with the expectation of this
approach. They have written a single threaded VM which is much more
stable but slower at the moment. However they expect it to become much
faster as they develop it further.

They will make the VM into a DLL (i.e. (Q. from Bruce) also as an SO on
UNIX - and it may well run there first) and are now looking at the issues.
They have to decide whether it runs when it is not being called, etc.

The 64-bit VM has been around for a while but needs development to
exploit it e.g. via a much larger space for identity hash. (ST-80 has 14 bits
so identity-matching containers that grow larger start performing poorly.)

Generally, the hashing code is being reworked to improve the distribution
of hashes. Collections of strings were hashing via first, last and some
middle chars; this could act badly for some cases so string hashes now

32 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
check all characters. General hashing has dropped the bucket scheme for a
better-performing single-level hashing. A hash analysis tool is in the public
repository; by all means use it to check hashing in your own apps.

Sockets and THAPI are being much speeded up by solving old problems.

Eliot Miranda left in December and John Sarkela has taken over, working
with Peter Hatch and Andres Valloud. They are addressing process issues,
e.g. the VM code is now in regular subversion check-in instead of sccs with
the VM checked in once every release (“whether she needed it or no” :-).
The VM’s regression test suite is being formalised for all platforms.

Widgetry, the UI framework they have been working on for (quite :-) some
time, is now stabilised at release 1.0. The (strongly-presented) prior view
that all VW users would (have to) migrate to it is now wholly changed.
They are resuming development of the old Wrapper UI, which has not been
comprehensively updated for some time, and this is how they will address
their customers’ UI needs. The effort of rewriting a new GUI framework
was more than expected and extra resources are not available. Existing
customers were reluctant to migrate for valid reasons. Re-examination of
Wrapper has persuaded Cincom that underneath its framework-obscuring
GUI-builder UI, Wrapper is evolvable. Gradual evolution of the existing is
more the Smalltalk and XP way than big-bang replacement.

Widgetry 1.0 lacks some things you might like: it has no migration support
and no UIBuilder. For documentation, there are web resources, Sames
blog, Jim’s blog, etc. Eager adopters may use it and those who have UI
requirements that Wrapper cannot meet. Widgetry 1.0 will be a supported
product but users should not anticipate Cincom devoting serious resource
to moving it beyond its 1.0 state in the next 18 months.

(Various questions) They had 7-8 people full-time on Widgetry for a while
to port VW’s IDE UI and could not sustain that. Porting the workspace
(that’s a simple UI!): doIt goes to the compiler which is hard-coded to
expect a ParagraphEditor. A number of things like this emerged. They had
to keep old and new working (there’s some stuff from the UI framework
before Wrapper). Business-case-wise, the new GUI framework is less
important than the web opportunities.

Seaside is a major new initiative. Michael Lucas-Smith is now leading the
Seaside work. They see that as a major way of reaching new customers for
Smalltalk. J2EE, .NET and web services are heavy and there is now a lot
of reaction against them. Lighter frameworks like RoR gain traction
because of this. Seaside does better than RoR. Michel Bany has been
maintaining the VW Seaside port. They now want to make it supported and
integrate it with VW facilities (less use of Squeak compatibility stuff).
• They want to make it easy to choose how to load and use (just Seaside,

not ‘Seaside for VWWebTookit or Seaside for Swazoo?’ type
questions). Seaside will now use OpenTalk-HTTP. OpenTalk is VW’s
general distributed programming library.

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 33
• They will keep strongly in synch with the Squeak version: tools to
support automatic code mapping between the two will be provided.

• They will provide relational database support (see Alan’s GLORP talk)
They are also improving network support. Streaming large content (HTTP
serving and mail messages - SMTP, POP, IMAP) is being improved, as are
handling mail messages in general.

Q (James Foster) Fast CGI? Alan sees it as obsolete. (James) Reverse SSL;
do we have to handle the reverse proxying? No, it works OK. You can use
Apache as front-end.

The have a MySQL connect preview. Alan is using GLORP to parallel (and
much surpass in scalability) RoR’s ActiveRecord. (e.g. RoR uses a naming
convention for foreign-key to database mapping, but a database already
knows this mapping and GLORP reads it from the database).

Q. Available in other dialects? Some of the recent code Alan is presenting
is in Cincom OR (licensing to be reviewed). GLORP is available in several
dialects. [Niall: I’m a fan of GLORP. I’ve learned by experience that some
ports talking to some databases see more use than others. If your planned
dialect-database pair is not one of the common ones, talk to current or most
recent users in your dialect and/or talking to your database; it may repay
you in lessened set up and configuration time, and robustness of use.]

RuntimePackager is being improved to make it easier to switch between
headless and headful. Some stuff, e.g. debugger stack traces, is being
moved into the base, so RTP is less needed. The base image is being made
smaller (for example, now that they have the stack trace in the base, the old
debugger is no longer in the base).

Scripting support: they want to run scripts from the command line or files
without launching the whole base image. Thus they want the base more
tolerant of headlessness. Some string-handling operations are easier in
scripting languages than in Smalltalk; they will try to make VW less
verbose in these. See the package ScriptingSupport in the Cincom OR.

Q(Paolo) I will demo scripting stuff tomorrow and others have also done
work; interested? Yes; we don’t want VW XML format to be the syntax.

(Alan skipped several slides for time.)

Shadow Compilation: atomic loading is in 7.5. but switched off. It exploits
namespaces to compile in a sandbox and then maps to the actual location
only when (if) it all does compile. There are interesting issues. A VW
subclass of the compiler will rely on a class (inst?) var being populated
which this breaks at the moment. Overrides are also not yet handled.

Q. Applies to pundle loads / pundle updates? Yes, a pundle loads
atomically, but prereqs are loaded separately.

34 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
Q. Atomic publishing? This is the case now. The questioner thought he saw
the opposite that very morning when he lost his connection while
publishing a bundle; several packages were published although others and
the overall bundle did not. Alan will check and fix it as needed.

Q. Graphics work? Heavyweight solution is e.g. Cairo; Travis doing work
but it is experimental at the moment. Some lightweight work is being done.

VASmalltalk, John O’Keefe, Instantiations
John left IBM after 39 years just to stay in Smalltalk. He started in the
1980s, doing extreme modelling - see Andreas’ talk - without knowing it.
Instantiations has an interesting history. It was formed by developers from
Tektronix many years ago, then bought by Digitalk, from whom some spun
off to form ObjectShare which swallowed Digitalk from which some left
to form the second Instantiations.

VASmalltalk 7.5.2 has Windows Vista (32 and 64 bit) support. It supports
SuSE, Red Hat and Ubuntu with 32 bit and 64 bit. (It does not have 64 bit
support as such but it tolerates 64 bit.) It integrates the Refactoring Browser
and the RB Envy extensions, and SUnit with SUnit Browser.

They tolerate and take advantage of Windows Vista but are not certified
and do not seek it (he’s been through that process before). User Account
Control: Vista has really tightened up security - in the windows sense. :-)
Users run as standard or administrator (who runs as a standard user). You
have to identify upfront what security resources your application requires.
This is done in manifest files (usually; you can also set properties). They
ship these manifests with the executables, some of which require
privileges. Installing on Program Files mean standard users cannot modify
files there so the image refuses to run, with unhelpful error messages.
Future releases will prompt about this; for now, you have to know that you
must copy your images elsewhere or not install under program files.

Windows Aero gives you new colour schemes, themes, widgetry and
animation. John is not wild about it but it looks nice and was easy to use so
they use it. Windows Vista themes are not enabled by default but can be
turned on in the manifests (mostly) or by explicit invocation if you want
custom controls. They supply some manifests with commented-out
sections that you uncomment to get it. He showed a window with lots of
widget types in classic windows, then in Vista without manifest and then
in Vista with manifest (see his slides to compare the look in each).

VA also offers widget add-on kits for custom widgets, e.g. WidgetKit.
These are not theme aware. WindowBuilderPro is theme-aware.

Windows help support now relies wholly on compiled html and deprecates
.hlp; Instantiations have replaced their few remaining .hlp files.

SuSE and Ubuntu were mostly a platform validation effort; very few
changes were required.

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 35
Windows large address support lets applications use 3Gb of address space.

They support Oracle 10 LOBs and BFiles being stored outside the database
(which holds pointers to them), and microsecond-precision timestamps.

They have integrated the Refactoring Browser (thanks, Niall) and the
extension of it to call Refactoring Browser features from Envy Browsers
(thanks to Joseph and Alan, and to Niall for maintaining it) and also the
checkpoint stuff that Adrian did. The also have SUnit and SUnitBrowser.
The ENVY/QA code quality suite is also in the product. It is extensible so
you can add new tools (alas, documentation on how to do this is poor, but
he has found it easy to add new tools).

Q. Envy/QA has problems with abt* methods, so he has to make it omit
them. These are the generated methods. (Another point) Their generation
changed from 6 to 7, giving spurious differences in comparisons. John
offered to discuss offline to make the default settings what users want.

Code Coverage tools is fully integrated with the development browsers.
Code formatting can be customised; there are three different formatters you
can use, the basic, the Refactoring Browser and the customisable one; they
aim to coalesce these.

His near term goal (in next version if possible but not guaranteed) is
Seaside. The WebConnect and web services frameworks are heavy and it
is great that the Smalltalk community is coalescing on Seaside. He had
hoped to show the Seaside counter running on their 2.8 port today; alas, he
cannot but they are very close to having it running. Right now it runs on
their Http server. They are feeding information back to Sport when they
find compatibility issues with this Seaside port. However the main issue is
that the context model in VA is not at all like VA and this is the major task.
They would rather make VA support continuations without modifying the
VM but they may have to.

Their web services support is rudimentary (workspaces where you copy
and edit templates) and they will work on tools to improve this, gathering
together in one place all you have to do to create a web service.

Over the years VA has tried several IDE approaches, e.g. TrailBlazer
(which is like Dolphin’s idea-space), VAAssist and so on. They aim to
consolidate and rationalise all this, plus the QA and other tools above, to if
not one then certainly fewer browsers.

Installation and uninstallation is being simplified and made consistent
across platforms. Support for DB2 V9 and Oracle 11g may be added and
they are looking at GLORP for object persistence. ObjectExtender is their
old such framework but it was bloatware (very large and has had no
updates for 5 years).

Their documentation is HTML based and looking old. They will replace it
with PDF (but adobe reader does not run on 64bit today) or CHM. They

36 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
will maintain the cross-book search and invocation-from-image features.

They have had 6500 downloads. They have 2200 active users and 225
customer companies. They have been very successful in converting the
IBM installed base to Instantiations (which was a bit of a surprise to IBM).
Via an IBM contract, John also supports IBM VisualAge Smalltalk on
mainframes, which IBM still sells, so if you need it on 390, talk to him.

Q.(Thorsten) How many developers? More than just him and less than
Cincom :-). It is about half- a-dozen. They are almost all in Raleigh NC
except for Eric and sometimes a consulting opportunity causes one of them
to be pulled off development.

Free GemStone / Seaside in Linux, Monty, GemStone
In a ten-minute slot, he explained how small apps (including commercial
apps) can run for free. He ran through the Seaside-implemented web
applications that guide you through starting GemStone and coding in it. For
details, see James Foster’s talk (also my 2007 Smalltalk Solutions report).

GLASS: Gemstone Linux Apache Seaside Smalltalk, James Foster,
Gemstone
Gemstone is the second oldest Smalltalk dialect but it has not had much of
a client interface till now. GLASS provides the Seaside coding web
interface. (Martin McClure is also the volunteer graphical designer; the
GLASS logo is his.) James started by reviewing Gemstone’s current state,
then focused in on GLASS.

The US congress seems to think there’s no problem they cannot solve and
decided to solve the latest energy crisis by changing when the sun rises and
sets. Gemstone provide a TimeZone patch to help their clients deal with
this, which has been like Y2K for some. You can now have a great many
flexible timezones. Another blessing :-/) from the U.S. congress was the
Sarbanes-Oxley act. They have made the tranlogs easier to audit.

Q(Bruce) Captured in syslog? No, they have their own logging in the
database and this tool runs over it.

They have done more 64bit stuff, including: multi-threaded stone,
polymorphic lookup caches, some float operations are now primitives,
there are ten writelock queues to let you get another if your first attempt
failed. They have done locale work for international customers. RcQueue
adds are faster (millisecond-based), size can be preconfigured and reduced
conflict equality indexes are available.

There is better handling of LostOT (if nothing done, eventually thrown out
with exception thrown). Sorting in collections is done better. #and: and #or:
have been optimised. They now offer level B support (you get supported
but don’t call us in the middle of the night) for Intel Mac libraries.

James was a customer before he worked for Gemstone and it long had a
reputation like luxury cars; if you have to ask how much it costs you can’t

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 37
afford it. At Smalltalk Solutions, they announced a free edition of
Gemstone. The GemStone Web edition is a no-cost licence (even for
commercial use; this is not a trial or non-profit-only licence).You can have
a 4Gb image (i.e. repository) size with 1Gb shared page cache. (Changed
since Toronto) they no longer limit you to 2 VMs; discussions with early
users, Avi in particular, showed them that some web transactions are long
(credit card authorisations can take 5 seconds and you cannot block all
other users while that is happening). This licence is to run on 64bit Linux
on 64-bit Intel / AMD / etc. (but not, of course, PPC) i.e. AMD64
instruction set, i.e. x64 instruction set. It must use only one CPU (maybe
should be corrected to ‘one core’) on one host.

One of Gemstone’s major values is transparent object synchronisation.
GemBuilder for Smalltalk is explicitly disabled in this free licence. Alfred
commented how surprised he was at the idea of working without having
this and James was most pleased that a paying customer (Swiss national
Bank) could not imagine transferring to the free licence; their market
segmentation is clearly OK. :-)

Other Seaside-supporting Smalltalk dialects are single-user non-persistent
so an application running on them must add that. Gemstone’s value is that
it is multi-user and persistent; it can run across multiple hardware and so
on. Seaside is a server application so the lack of a UI is not a drawback for
GLASS. Persistence approaches in other Smalltalk dialects raise issues. If
an image quits you lose data and it is only in one image. Identity is an issue
with binary file-outs. Relational databases are extra work, maybe not too
much with GLORP but you must code it. Multi-user can be one image
serving multiple clients: Avi has a huge number of small databases each
accessed by few people so as long as he can route all requests to the right
image he’s OK; fine for his market segment but not scalable to all.

Gemstone can have multiple VMs each having its own OS process but each
with full access to the database. So you have close to linear scaling (close
to; there will always be bottlenecks but their work is to remove and
streamline them continuously). Customers run 1500VMs on 200 hosts
doing 1000 commits per second. They have tested 3000 VMs with 1
terabyte of data (16 billion objects). Customers sometimes ask them to
prove it will work with 5-10 terabytes of data and they reply ‘send us the
hardware to test.’ (A question verified these are US billions, not UK ones.)

They have ported Swazoo’s Hyper HTTP server and FastCGI server,
Squeak’s Monticello code store (for File and HTTP types), Seaside 2.6 and
Seaside 2.8 and SqueakSource 2.6. They provide Squeak-based tools based
on the OmniBrowser framework plus some of its tools.

GemSource is at seaside.gemstone.com/ss. This is a zen image (runs on the
same server as runs www.gemstone.com). They have 28 members and 12
projects. They read with some amusement the squeaksource discussions
about ‘what happens if I lose code’; if your squeaksource db is gemstone
you do not lose code (server may be put down occasionally but it comes
back up, replays any transactions and the code is all there).

38 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
Most ports from the official squeaksource need an export process that is
slightly involved. GemStone has the ‘advantage’ of having no native
source control system they needed to stay with so they simply ported
Monticello. Thus they get their Seaside direct from the source (and
anything else they want to port). While others try to get persistence, Dale
had to struggle with keeping some Seaside objects transient.

Namespaces: different users in their multi-user image may want different
code. Gemstone has long been able to namespace classes and globals. Now,
each VM can have its own method namespace. They’ve added to the
lookup SessionMethods for classes so a method sent to Array looks in the
SessionMethods for Array, then Array methods, then the SessionMethods
for SequenceableCollection, then SequenceableCollection and so on. Thus
each user has the illusion that they are alone in the image and can change
their code. This doubles the method lookup but only on the first call, after
which it is cached. James would like to develop this further.

They now support _ as the assignment statement so you can import code
from Squeak, change in Gemstone and export again and not have to worry
about noise in your diffs. They emphatically do not encourage using it; it
is just there to reduce noise (and yes they could have had other solutions
for that). It was noted that Squeak now discourage it; maybe they’ll drop it.

A class can now have the attribute DbTransient. When you commit, all the
instvars of such an object become nil i.e. they remain local to the session.
Use this for Semaphores and suchlike objects you need to be transient but
referenced from persistent ones (a typical pattern is to wrap such objects).

You do not want to rely solely on your UI layer to validate your objects (c.f.
Leandro’s talk). Similarly when you rollback domain objects, you may not
want to rollback your Seaside UI objects. Thus you can put domain objects
in one bucket, Seaside in another and have distinct rollback. This is not
really nested transactions but just to solve this issue: if the user enters a date
of birth in the future, they do not commit the domain object but they do
commit the continuation; you want those menubar links to keep working.

Whereas many Seaside applications use a Smalltalk web server in the same
image, large-scale applications - i.e. the kind Gemstone will scale well for
- will usually want to use a separate web server. You can use e.g. Apache
to support ReverseProxy (and/or FastCGI, noting that they have heard
today that FastCGI is probably not needed), serve static pages, provide
anti-web-hacker security, load-balancing, SSL (https) and fail-over.

Porting: export your Squeak application to the Monticello repository. Load
packages into Gemstone and fix the compile errors you will see (Gemstone
does not have {}) so you modify the code in Squeak, export to Monticello
again, load again. Then you will have initialization errors, usually DNUs
referencing missing classes or methods, so load them (or workaround
them); many of these will be platform specific. Now compare your image
to what is in the repository. They should be the same; if they are not,
something did not load. Now look at Undeclareds: the key is the global and

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 39
the value is the set of classes and methods that reference it; fix those. Now
run your SUnit tests and finally check the application’s behaviour by hand.

Q. Why not add {} which is useful, instead of _ which is not? Alas,
Gemstone has another use for {} and they offer similar semantics. As they
were porting, they just found a lot more underscores than curly braces. It
was also a lot easier to make the change. However Dale commented they
had not finalised this. We know that since version 2.7 there are no
underscores left in Seaside so it may be removed again.

Q. Which version should we use? They have ported 2.6 and 2.8. Judging
by Lucas’ talk, you should use 2.8. An early customer with a 2.7 app ported
it to 2.8 to move it to Gemstone and is happy with 2.8’s behaviour. Dale
was on vacation (in the ‘Seaside’ resort community in Oregon) when he
ported Seaside 2.8 and it was an improvement, cleaner and leaner. Some
stuff he did for 2.6 he realised was no longer needed.

Porting has been discussed in detail but it has indeed been fairly easy. Dale
ported Pier to the state of loading cleanly almost over a coffee break.

Q(Tim) Automate builds? Yes, automatic build tools could be written.

They offer a shared Gemstone server on the web, with Sandbox etc. All this
works today but has just been set up and various bits have teething issues
being solved. James closed by stressing that Gemstone does not imagine
they know Seaside better than the audience. Their aim is to provide tools
to let Seasiders go on doing their good work.

He demoed running Linux Gemstone on VMWare on a Windows machine.
There is a webpage you can visit to smooth the non-trivial installation of
Gemstone. Seaside is pre-installed. A Squeak image is provided with some
tools, call the UI to set where the server, the database, etc., are. He opened
the GS/S Monticello browser which was looking at code in Gemstone. He
opened a SystemBrowser G/S[1] to browse some of the ported Monticello
code, itself in Gemstone. These Squeak tools give you an environment with
a user interface. He ran 100 factorial in Gemstone from a GemStone/S
Workspace he opened in Squeak. This does NOT do object marshalling
between GS and Squeak (c.f. Alfred’s question), That GBS product exists
for VA and VW and is very sophisticated.

OmniBrowser separates the user interface from the domain so the Squeak
UI can talk to the Gemstone domain. OmniBrowser UIs with their panes
showing lists of things get populated from and talk to the Gemstone
domain objects. He showed classes from Gemstone’s base in the
OmniBrowser UI. You can browse Gemstone code in one window and
Squeak in another (and when porting that can be useful).

Gemstone is a very solid Smalltalk product. Seaside is ported into
Gemstone and Seaside is very solid in Smalltalk. These tools are more
recent and rough ports, useful but a month or two away from availability
except in beta.

40 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
Impromptu OS8 Demo, Georg Heeg
What Georg demoed became product that day. He installed via the regular
windows installer; they do it that way because Vista does not allow (by
refusing to certify) any other installation. Open source DLLs must be
signed by an authority. Now that folders within ‘Program Files’ are not
writable any more (see John O’Keefe’s talk), you choose where to install it.

This was Georg’s favourite Smalltalk project in all his 25 years because it
was so synergetic. Seaside.String>>+ was the only incompatibility (Georg
thinks Seaside’s implementation of String>>+ is lousy). He showed how in
VisualWorks the ObjectStudio look is wholly available. Grab a window
and swirl it around to see if it is an ObjectStudio window or a VW window:
emulated widgets wipe-out while swirling, OS native widgets do not.

He did Date today inspect with a halt (OS text menus do not include
‘Debug’). Compilation does a tree transformation turning method to
os_method (see the os-substitutiontransform shared variable for a list of
all 110 of them). Default implementation in Object just maps back to the
original call. The other part of the transform is the namespace ObjectStudio
which imports as many VW classes as possible but each is chosen by name;
it does not simply import all classes in a namespace.

What can OS offer VW. It has a native windows GUI and a designer
(palette of widgets), and a modelling tool.

Q. Will we see OS packages in Store? Those parts that implemented this
were developed in Store in a Cincom internal repository. The distribution
is via Smalltalk archives which present the loading order in the same way
as Store. A Smalltalk archive is a tar file of parcels, ordered correctly for
loading, which a Smalltalk utility reads directly; see the SmalltalkArchive
bundle. It would have been easier to do it all in Store but this helped
existing OS clients defer Store learning.

Q(Martin) Tried running ObjectStudio with Gemstone? Georg has not tried
it yet; he wondered if GemStone had? The Gemstone guys had not (they
only realised this week that the possibility existed) but thought it should
work. Georg invited them to try it (he gave his first Gemstone demo in ten
years in Vienna last week with no Gemstone-knowledgable guy there :-/)
but Gemstone was not in his demo image because of the Vista signed DLLs
issue mentioned above, so they continued offline.

Q(Tim) What’s the future of OS? OS was developed concentrating on
database integration and native widgets, then sold to Easel then sold to
Cincom. Many improvements were made in that time but not to stability.
Cincom invested in stability. Until this OS8 initiative, they just bug-fixed
it. OS8 did compatibility. Georg foresees completeness for the next step
(adapt components that have not yet been adapted). The next step could be
the UI; the look is Windows 95 timeframe. OS is seen as a core product.

(Alan) The OS team has had a large chunk of infrastructure removed by
consolidation; they now have less to maintain and more ability to develop.

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 41
Paolo Bonzini, GNU Smalltalk
In the last two versions they have worked on support for scripting. The
GNU Smalltalk has an image but it is not as central as in other Smalltalk’s.
You can start from a fresh image at any moment. The image is built up from
the base rather than being stripped as in other Smalltalks. (It takes one
second to rebuild the basic image). On a command console, interpreting
what he typed, he showed using collection protocol to manipulate stream
contents. A generator takes a block and returns a reference: he showed
using these in anySatisfy: with a yield call creating a continuation
used in the next iteration of the loop.

He showed putting the stream, not its contents, directly to files. He ran
some SUnit tests. He showed unicode manipulation done directly and after
loading iconv into gnu, after which he saw strings displayed more usefully.
He compared the sizes of two same-no-of-chars strings in unicode and utf8
(second twice first, of course). He then ran the II8.IconvTest SUnit tests.

You load volumes to connect files on your system to gnu for handling.
After making them visible, he loaded NetClients, MySQL bindings and
GLORP (usual demo hiccough: had to remake at one point). He then ran
the large number of GLORP tests.

GNU has a small graphical interface but it is not fully developed for lack
of time. He wants to port the OmniBase framework to get access to some
good tools. He showed the simple UI: class browser, transcript, normal
Smalltalk debugger. Finish (i.e. Resume) in the debugger uses a clever
continuation to run the rest of a method at full speed.

GNU 3.0 has a better script writer (written in Lugano last semester) and
better import from other dialects.

Compilation Research
Reflectivity: sub-method reflection, Marcus Denker, Philippe
Marschall, David Rothlisberger, Nik Haldiman, Stefan Reichhart
(Adrian Lienhard and Lucas Renggli helped, as did Eric Tanter, Stephane
Ducasse and Oscar Nierstrasz.) Smalltalk has reflection which is good for
development environments. Methods are objects but their contents are not.
It would be nice to have sub-method-reflection. Some tools that do this
exist [Niall: e.g. the Zork-Analysis package in VW, SmallTyper in VA] but
in most reflection frameworks the method is an irreducible object. They
made a compiler that can generate a reflective method. When you try to run
it, the runtime complains and generates the compiled method. At any time,
you throw away the compiled method to regenerate the reflective method.

Marcus demoed: he inspected a class dictionary containing reflective
methods, then he ran the code and reinspected to show that all methods run
had been converted to compiled methods.

Code rewriting can be done during this conversion from reflective to
compiled method. For example, all assertions could be removed as the
compiled method was generated. They can also add annotations to code

42 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
knowing that these will be ignored on conversion and so at runtime, or else
rewritten by a variant converter-to-compiled-method defined to convert
those annotations to acceptable Smalltalk code. They can bind elements to
meta-objects with activation conditions, etc. (In Java, this idea has been
explored but it is very ugly to implement since it works by manipulating
bytecode. In their system, it is very neat since they know much more than
the bytecode level does, so the code they generate can be very efficient.)

He demoed the bouncing atoms app. He made it beep every time an atom
bounced. That was rather too often so he made just one atom beep when it
bounced (turning it a different colour so we could see it was working OK).
beeperLink := (AtomMorph>>boundIn:) sends...

Q. Can you apply this to any method? A primitive method can map the
alternative code into a reflective method, then convert to the primitive.

Q(Niall) This allows dynamic rewriting of annotations; can it handle
dynamic collection of type data for variables within a method, as Zork-
Analysis does? Marcus said it could but I did not understand how since
conversion of the whole reflective method to a compiled method occurs
before any part of it is run, so the points for collection were no longer there.
It seemed to me that the reflective method substructure would have to
provide an evaluation framework, c.f. Michel Tilman’s Abstract Grammar,
so collecting type data by evaluating the method via that framework,
instead of converting and running. We lacked the time to resolve this.

Q. Can you have several links on a single parse node within a reflective?
Yes, but only one can be the replace link used by the method converter.

Squeak VM Performance, Bryce Kampfjes
The Squeak VM is not hugely performant but it is simple and robust. It
does 9.5 clocks per bytecode, so if you remove instructions but do not fix
what is holding up their execution, that does not much help performance.
It takes 314 clocks per send. Branch mispredicts takes 10-30 clocks. There
are L1 and L2 caches and RAM access takes 100 clocks. You can write one
word every 4 clocks on a good CPU, slower on others so if you try to write
faster you end up queuing and that’s a hit. Modern CPUs do out-of-order
executions so you only pay for your worst delay.

They have a method cache and recycle contexts (flyweight pattern). They
inline interpret() and do indirect jumps at the end of every bytecode.

Context recycling lets you avoid creating and GCing a context every time
you need one. In Squeak, contexts are always normal objects (unlike some
dialects which reify them only when needed).

Q. When are they initialised? When they are created; you can’t have
uninitialized contexts or your GC will get unhappy.

Uncaptured contexts are recycled. They are held on a linked list and a
counter; a sorted collection would get two pointers to the same thing and

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 43
then crash. (The Appel argument does not apply to Squeak because Squeak
does not use a copying collector.) Anything that can access a context
prevents context recycling, i.e. normal stack accessing but also blocks.

Method caches provided a 30% gain for the benchFib benchmark and will
give much more in most cases. [Niall: see Eliot’s PIC talk at ESUG 2000]

The interpreter loop is wholly inlined to one vast C function, thus exposing
all of it to C’s optimising compiler. An indirect jump, not a switch
statement, jumps at the end of each bytecode. In tinyBenchmarks, you
spend 95% of your time in this interpreter loop of which 78% is spent
compiling bytecode: this is where to optimise (branch mispredict time is
the next, low-grade, rival to this). Waiting for memory or on branch
mispredict means computing power is being unused.

Squeak’s GC is generational compacting, and mark and sweep (‘a funky
combination’). A remembered set is a form of write barrier for pointers
from old space to new space, since old objects can point at new objects and
you want to compact newspace without looking at oldspace. You can have
pointers and byte storage in the same space. This GC is simple and does not
waste much RAM. It is fast enough for the interpreter.

The GC can have four branch mispredicts in certain cases, so we could use
card marking. A copying new space collector could make it quicker to free
objects (most objects die young) as you could just ignore the dead objects,
not free them. Giving SmallInteger tags to 0 and pointer to 1 could be an
improvement. However changing the GC would change the image format.

Q. Why? In an addition, you type-check both args, then remove both 1 tags,
then add the ints, then check and re-add the 1 tag to the result. Pointers
don’t care what their tag is but by the laws of arithmetic, SmallIntegers do
care. If the SmallInteger tag was zero, we could just add them.

Duplicating bytecodes was suggested as an optimisation. If you have one
copy of a bytecode in a method you have many branches at the end of it. If
you have multiple bytecodes, each bytecode is easier to predict. This made
sense when branch mispredicts were more common than on modern CPUs,
which have been optimised to the point where this optimisation offers
much less gain. Only 20% of relevant time is spent in branch mispredicts.

Q. Why is this ‘change image format if change GC’ a problem? It is an
organisational problem. Four Squeak teams handle various aspects and
they do not release on the same schedule.

Exupery, Bryce Kampfjes
Exupery is an MIT-licence Squeak program that other dialects can use if
they wish. It is a native code compiler that is trying to compile well.
Writing a compiler is mostly a software engineering problem, not a domain
problem. Most issues come down to bugs, reliability, etc. Exupery aims to
be 2-4 times as fast as Self. This requires a heavy duty optimiser which will
be slow. Self’s inline compiling was very sensitive to pauses and Exupery

44 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
has to get around that somehow.

Compilers are complex so he is writing it in Smalltalk, a simple language,
to get round that. It is not trying to replace the interpreter.

Smalltalk is slow for a number of reasons.
• We send frequently.
• Our methods are too small to optimise. This is a real killer. An

optimiser likes to find loops and then move things outside them.
• We do a lot of tagging and detagging: before you do anything with a

value you need to check that it is the kind of value you are expecting.
Just because you are doing a + doesn’t mean it is a SmallInteger.

• We have to do range checking: we avoid all C’s crashes but we have to
do all that checking.

• The write barrier is also an overhead. GC has two impacts: its own
performance and all the bookkeeping GC needs to do its job. (GC is
faster than malloc though not as fast as a perfect hand-written solution.)

To make Smalltalk fast you need:
• dynamic inlining: remove your common sends and expose loops to the

optimiser
• a decent optimiser that removes redundancy
Bryce’ analysis is that we can reduce Exupery from 2 bytecodes per clock
(which is also what VW gets) to one bytecode per clock (C’s range).

Dynamic inlining is conceptually very simple: I am calling this a lot from
this implementor so inline it. Self had a counter at the front of each method
but Bryce has begun with a Smalltalk-only approach. However dynamic
inlining makes debugging much harder (since what the same operation
actually runs can vary dynamically) unless it can be controlled easily: you
need to get the code cache in the same state.

To beat Self’s optimiser we need what Self did not have. We can combine
type checks and range checks and move them out of loops. If at: is to be
a single instruction then it cannot do type-checking, have a write-barrier,
etc. Moving stuff out of loops can remove redundant checks. These moved
operations can affect control flow, which adds issues but we know what
these issues are, so can handle them.

Optimisers are slow; worst-case algorithms are N2 or N3 which is not what
you want if your compilation time is a concern, but the ordinary range is
NlogN which is mostly acceptable - jet liner software would not want it.

Compilers are complex so you don’t want to add complexity from the
language. If you get a segmentation fault, it is nice to know that it is your
fault, not your language’s fault (i.e. your generated code’s fault, not the
fault of the compiler you used to generate that code). By compiling in the
background, it is easier to run the compiler inside the image without hitting

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 45
“I’m compiling but I need to compile something to run the compiler.”
Generally, Bryce cannot afford not to use Smalltalk: life is too short.

Self stopped execution while compiling, a great approach if you can
compile fast enough. If you can compile even faster, you could compile
everything before you execute it (c.f. Mimic: a research interpreter from
IBM; they published some nice papers) and so solve a lot of problems by
storing stuff in the compiled code you will soon throw away. Or you can
drive the compiler manually as Lisp does. Bryce is compiling slowly but in
the background; it’s a lot easier to decide the details of this when you have
a real system to play with.

Exupery is a large hobby project being done in small blocks of time, an
hour here, two days there, five hours later, some long pauses. He uses test
and incremental development: Compiler bugs are a pain, especially real
ones. (Real ones are almost the only ones in Smalltalk; everyone in this
domain knows the unreal ones that are raised in other languages that are in
fact the user’s code’s fault - but can you show that?) Another issue is
planning: this is a domain with a rich literature and many research papers
but researchers sometime publish those results that make them look good,
so you must plan to monitor, choose, investigate, verify.

During development you normally only debug new code and avoid
regression (reappearance of the same bug). If one of your test-driven
development tests breaks, you are promptly doing serious low-level
debugging. Some time must be spent maintaining and refactoring your
tests. He may spend a few hours thinking about and writing a test; a week
later he runs it and starts adding its feature to the system, often coding in
the debugger.

Acceptance and System tests are less useful. He kicks off the compiler and
lets it run till it crashes (typically 15 minutes at the moment). Performance
tests are also needful.

Dynamic compilation bugs depend on what is in the code cache, maybe
1500 methods of decompiled code. To debug, he starts by getting the code
cache log and replaying it; does it happen again. Some bugs are intermittent
- a GC happened at an unfortunate time. Gradually you focus in on one or
two methods. Since such bugs often happen only in odd-ball conditions
you must control what is in the code cache, which Smalltalk makes easy.

The current system has no dynamic method inlining nor a proper optimiser.
It does inline primitives. It is a basic compiler with a colouring register
allocator. It can now run in the background thread (needs a little more
debugging). It runs on Linux and on Macintosh (since yesterday, and only
with gcc optimisations switched on; a gcc bug in Mac is suspected).

He is still thinking about how to avoid the cost of slow compile times. You
could stick the compiled code in a database and distribute to many
machines, only one having to have compiled it. It is all just objects so how
do you keep them and ship them around? How should he allow frameworks

46 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
to modify the compiler? A general compiler cannot by default do many
things that a specific framework using a compiler could safely have it do.

Q(Bruce) Are you happy for people to use only bits of it? Yes; two projects
already are doing that. We coordinate by discussion. At present, the two
projects say, “We want to see it improved so just keep pushing forward and
don’t worry about coordination with us”, which makes it easy.

Java Connectivity
Calling Java - The JNIPort Framework, Joachim Geidel, blueCarat
Consulting
Joachim has ported Chris Uppal’s JNI framework (www.metagnostic.org)
from Dolphin to VisualWorks. We have a wonderful language so why call
Java? It keeps IT managers happy that you can answer ‘Yes’ to ‘Can you
use JMS?’ ‘Can you use ...’. Secondly there are many packages written in
Java, some of which are worth using, others of which you may need to use
and most of which you have not the time to rewrite. Having this ability lets
Joachim use Smalltalk more often than otherwise.

Joachim looked around, found Chris Uppal’s framework and decided
porting it was the best solution for his case. JNIPort lets you use any Java
class with any Java VM in Smalltalk. It is free (Chris’ licence says do what
you like but don’t claim that you own it or that you wrote it, and don’t sue
me). Joachim ported it in his spare time in 2006/7. To call some Java, do
jvm := JVM current.
class := jvm findClass: #’java.lang.System’.
class currentTimeMillis_null

A helper DLL and some Java callback classes sit over the base Java along
with the Java Native Interface code. The Smalltalk side of the callback
handling, along with basic wrappers, make up the next layer and the static
and dynamic (ghost) wrappers sit on top of that.

JNI is an invocation interface, using the Java VM (a library, not an
executable) function table and the JNIEnv function table. You must
remember that, for Java, local references are valid in a single thread while
global are valid in all threads; misusing crashed your app.
jniEnv := JNI library new

createFirstJNIEnv: JavaVMInitArgs new.
math := jniEnv

FindClass_name: ‘java/lang/Math/’
onException: [...].“this line optional”

absID := jniEnv
GetStaticMethodID_class: math
name: ‘abs’ ‘sig’ ‘(D)D’“path notn, not dot”
onException: [...].“this line optional”

arguments :=
JNIValueArray fromArray: #(-321.2d) types: #jdouble.

result := jniEnv
CallStaticDoubleMethodA_class: math
method: absID args: arguments.
onException: [...].“this line optional”

env JavaVM destroyJava.

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 47
He really likes that last method name. :-) He showed the model of the
function table pointers (see slide diagram). The JavaVM table has 5
functions, the JNIEnv has more than 200.

Q. Do you need a separate invocation method for each possible type of
argument? Yes (aren’t typed languages wonderful :-/).

Using this low-level API is not much fun. So then we move up a layer to
‘The Twilight Zone’. Here references are automatically encapsulated
within Smalltalk objects. We can send messages to Java statics and
instances, not directly to the JNIEnv. There is automatic garbage collection
and we can use reflection (Java reflection capabilities) to ask e.g. what
messages it understands. Now we can use dot notation:
jvm := JVM current.
zipfileClass := jvm

findClass: #’java.util.zip.ZipFile’.
args := JNIValueArray new: 1.
args objectAt: 1 put:(‘file.zip’ asJavaString: jvm).
zipfile := zipfileClass
callConstructorSignature: ‘(Ljava/lang/String:)V’
withArguments: args.

size := zipfile callintMethod: ‘size’.
entries := zipfile
callObjectMethod: ‘entries’
signature: ‘()Ljava/util/Enumeration;’.

Q. Why do I have to pass the Java VM? We are constructing, and getting
back a reference to, a java.lang.string it so we must know the external Java
VM we will use to build it.

There are many predefined wrapper classes, but many objects are instances
of JavaLangObject and we use reflection to find out what it is. Instances of
JavaLangClass are then built from the reflection API. His slide of the
predefined Wrapper classes shows a few grey abstract classes and many
yellow boxes for Java classes, plus a JavaPrimitiveInstances class for the
Java primitive non-objects.

Working in this layer is still not ideal, so the topmost layer is Ghost Classes,
where we just send messages directly, as in other Smalltalk. Hence we need
wrapper classes for each Java class we will use. These Ghost classes are
generated automatically when the first reference to an instance of that class
appears in your image. When a ghost class no longer has an instance, it
vanishes automatically. (Later discussion indicated this is not quite the
situation in all cases.)

Q. Performance hit of not keeping the classes? No performance problem in
the uses he had so far. You need to do this dynamic (re)generation if you
want to be sure of up-to-date compatibility.

Ghost methods are generated from the reflection API. Context-specific
info is embedded into CompiledCode as literals (be aware your decompiler
will not like this so your debugger may also show it strangely). In

48 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
jvm := JVM current
zipfileClass := jvm

findClass: #’java.util.zip.ZipFile’.
zipfile := zipfileClass new_String: ‘MyZipFile.zip’.
size := zipfile size_null.
entries := zipfile entries_null.
entries asEnumeration do:
[:each | Transcript cr; print: each].

the methods with underscores are automatically generated (you can
configure the string that is appended to the generated methods to denote
arguments). The Ghost class is a Smalltalk class that wraps the static part
of the Java class. JavaLangClass by reflection gets the rest of the class.
These Ghost classes have a hierarchy parallel to Class and Metaclass in
Smalltalk. If you are not confused by this meta-hierarchy then you are one
of those unusual people who like to study meta-circular class definitions.
If you are, be assured you do not need to worry about it. :-)

He reimplemented all the Dolphin JNI tools. The Settings tool is where you
specify the path to the JVM and the runtime command-line settings, plus
many configuration options. It is a good idea to use an absolute path to the
JVM and for the class loading path: different versions of a Java runtime on
your computer mean the Java VM can get confused about which path to
load from. Once Java 1.6 decides to load a Java 1.5 class you are doomed.

The Class Wrapper browser lets you browse classes and methods and the
decompiled code of a ghost method (will show you the embedded method
ID argument, bypassing dynamic lookup of the method id so calling is
much faster). The JVM id is also embedded because it is the JVM that can
throw an exception (which JNI will re-raise in Smalltalk). The Inspectors
will show you e.g. Java strings.

He demoed calling the Java logging framework from a VW workspace.
...
logger severe_String: ‘Arggh’.
...
logger severe_String: ‘Better now’.
...
Doing this in a workspace gets you a warning that some messages are new
(ghost methods not yet generated); you just proceed and the methods are
there when called. He ran and opened the logfile to show it had worked. He
then invoked Swing, making the Java VM load a lot of Java classes and
JNIPort generate a lot of Java classes. The window appeared and he then
ran some more code to show a JPEG file (usual demo hiccough; JPEG file
in the wrong directory).

He then demoed callbacks from Java to Smalltalk. He opened a Swing
window that showed the Smalltalk class hierarchy obtained from
Smalltalk. Calls to Java are fast. Callbacks to Smalltalk are slower so use
them minimally. If you passed a Smalltalk code block to Java, you would
get into trouble if Java then ran the callback in a different thread, as it can
do. So JNIPort has a HelperDLL. Java calls back into the HelperDLL
which queues the request and then passes it back to Smalltalk in the same

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 49
thread as the call. You must write some wrapper code in Java to use this
HelperDLL; it is straightforward for an experienced programmer but he
recommends using it sparingly as needed. One use is Java Messaging
Service; if you want to receive messages from Java asynchronously you
need callbacks.

He plans to allow generating static wrapper classes instead of generating
on the fly. This is for performance, on his laptop, it currently takes 8
seconds to attach a Java VM. Mac and Linux should be easy to add.
Disguising Java packages as Smalltalk namespaces should also be doable.
Now that Dolphin is no longer being developed, so the need to keep in
synch with new Dolphin versions of JNI is unlikely, perhaps we should
unify JavaConnect and JNIPort. See slides for code and doc webrefs.

Q(Andreas) method call speed benchmarks? The stable way to attach a
JavaVM is to generate all the ghosts at start-up. The other way (option in
settings tool) is to generate classes when a message is first sent to an
instance. Startup is then less than a second but it sometimes crashes
strangely. Sending messages to Ghosts should be far faster than sending to
static classes since the latter cannot embed the IDs. (Andreas: Cincom has
experimented with embedding all the information into a DLL and obtained
microsecond times.) A document management user of JNI who were using
web services have already seen a huge speed-up so at the moment it is fast
enough for users, Yes, it could be optimised.

Q. Visibility? Ghost classes do not appear in the RB, etc., because those
classes do not know their subclasses, will be GCed when no longer used,
etc., all of which the standard VW tools dislike.

Cava := Eclipse asSmalltalkPlugin, Joachin Brichau and Coen de
Roover, Universities of Louvain and of Brussels
Joachim wants to reason about Java applications using SOUL and
IntensIVE. Coen and Joachim are researchers studying code. They can do
a great deal in Smalltalk using SOUL, Moose, etc. However they often
have industrial partners who use Java code. Most of the time they import
Java code into Smalltalk via parsers. This is done via an adaption of Frost
called Irish (http://prog.vub.ac.be/~jfabry/irish/).

However, Java is really not Smalltalk. You have to implement symbolic
resolution, call graph and control-flow analysis, etc., plus when your tools
change, the code of the original is unchanged, and you must keep up with
the way Java changes (this was a big problem for Frost). All this is too
tedious but they were not going to move their tools to Java/Eclipse.

However they can reuse Eclipse facilities such as resolve name and call
graph static analysis. So they built Cava (Code reasoning for Java).
JavaConnect is very similar to JNIPort; it is a different implementation but
a similar approach. Using this, they can call the Eclipse interface to get
Java parse trees. Then they can use their tools to reason over these.

Using the Seaside web class browser, you can start a JavaVM loading an

50 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
application and browse its code. In SOUL you do
?project isJavaProject

and you can see a very raw dump of all the code written unformatted from
the Eclipse AST nodes (that’s what Eclipse does; not so impressive). They
can open Smalltalk inspectors on Java objects. They can install additional
Smalltalk methods into the Java class wrappers (as can JNIPort; maybe
they do it better) so you can provide better display methods. This Smalltalk
mixed-in to Java could be done via Traits for better separation.

So queries might be ‘All invents published on the bus should not be
modified thereafter’ or ‘Which classes should be enums’ (enums are
available in Java 5), which could be done via:
?cu isCompilationUnit,
?cu hasclassDeclaration: ?class,
?class classDeclarationHasBodyDeclarations: ?body,
findAll(?field,and(?field isChildOf: ?body,

?field isPublicStaticFinalFieldDeclaration,
?field hasNumericType),

?fields),
?fields hasLength: ?l,
[?l > 2]
(as their examples show, SOUL syntax is now very Smalltalk-like), or
‘Refactor all for-loops to use enhanced Java 5 style’ so that:
for(Iterator i = c.Iterator(); i.hasNext();)
{String s = (String) i.next(); ...}

becomes
for (String s : c)
{...}

Every AST node in Eclipse has meta-information which you can use to
generate appropriate Smalltalk to navigate the tree of nodes (e.g. methods
hasNumericType, isPublicStaticFinalFieldDeclaration and
hasclassDeclaration: above). He showed the full query which was
several lines of SOUL. There are utilities to provide static points-to and
call-graph analyses for Java programs. They can use these to simplify such
query expressions. For example, finding accessor methods needs two quite
complex SOUL queries. They want to let people write just template
methods that they convert to queries via tools. For Java programs, they
make the template like java with logic variables. Find accessors:
if jtClassDeclaration(?c) {
class ?c {
private ?type ?field
public ?type ?name(){ return ?field }
}

}
Find concurrent collection modification:
jtStatement(?s) {
while(?iterator.hasNext()) {
?collection.add(?element);
}

},
jtExpression(?iterator){?collection.iterator()}

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 51
Cava will be in the Cincom OR soon. It is currently focused on SOUL and
IntensiVE. Joachim is working on extensions to use Moose as well. They
would be glad to integrate other code analysis tools if anyone offers them.
See www.info.ucl.ac.be/~brichau/javaconnect.html.

Q. Difference between JNIPort and JavaConnect? The approach is the
same. They subclassed to have JavaMetaclass and JavaClass to get similar
tool behaviour. They have integrated Java packages to Smalltalk
namespaces which JNIPort has not yet but they do not yet have callbacks
which JNIPort does have. They have discussed and should merge.

He browsed it in the Refactoring Browser, then started Eclipse (took a few
seconds) and opened a large project from the drop-down list. The first
query you run takes a while as they are cashing all the ASTs (he ran a
simple ?cu isCompilationUnit query - it took quite a few seconds
to find 130,000 - to effect this); thereafter it is faster.

Development Processes and Frameworks
Working Smarter not Harder: Development Tools, Processes and
Automation, Angela Wilson, Northwater Capital Management
Angela has been working at Northwater in Toronto, Canada for 5 years. At
Northwater, 90 people manage $9 billion of assets with clients in the
Netherlands, the US, etc. There are 4 smalltalk developers working in VA
and Gemstone. Bob Nemec is the creator and lead developer of much of
what she will present today. Her earlier talk (Smalltalk Solutions 2005,
Florida) was tool-focused. This talk is more about their processes and how
they have evolved over the years. (Be aware that what works for their small
team may not work for you.)

They have a custom Northwater menu to open their tools: login window to
their app, the instance migration tool, etc. They have customised their
Refactoring Browser and many other tools.

They run the exact same code in VA and in Gemstone, all version-
controlled in Envy. A string-comparison tool keeps the image in synch with
Gemstone. It used to be done manually and was much performance-tuned.
Now it is done automatically and noone cares about performance.

In Gemstone, you can have multiple schemas at the same time. You will
want to map instances in classes of the old schema to instances of the new
schema. Gemstone provides a basic utility for this and their tool gives it a
UI and means to find which collections of instances should be migrated
(they rarely use allInstances migration). Some years ago, they took a
few weeks to migrate 30 million objects, which was one tenth of their
database. The tool lets you execute on the database you’re logged-in to or
lets you generate a script which you then apply to other test databases and
finally to production.

Q. Lazy migration? No; Northwater always migrates actively. (She heard
about JPMorgan’s approach just yesterday.)

52 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
They use WindowBuilder and have tools to let them inspect their attributes
and accessors (i.e. aspects), to assign types, etc. They can use this to check
that objects are in a valid state. She showed an example of a visit to a hedge
fund, navigating to ‘who visited whom’, etc. Edit policies, themselves with
UI for editing them, let you define how developers see things and how
users see things. This lets them offer a tool quickly for later development
into a custom tool. A range of buttons let you launch code and
WindowBuilder views of components.

They use TotallyObjects’ socket package to know when users have a
runtime error. Users are sometimes slow to call about errors and sometimes
Northwater calls them first: “What did you do here?”. Some users want to
be notified of specific system changes. Sometimes their optimistic locking
policies see conflicts and if they see that happening regularly, that is a
prompt to think about revising that part of the system.

Their GemStone monitor is a large complex window. They monitor long
transactions (sometimes someone opens a dialog box and then goes to
lunch) and use of old systems. All users have an asynchronous abort every
two minutes [Niall: this is a common approach]. They also have some
buttons that the users can configure for themselves. All users see all
windows and permissions control what they can do (they used to hide
windows but that was confusing).

Q(Bruce) This works by statmon in background? Although statmon is
running in the background, this data is not from statmon but by querying
the gem.

Q(Bruce) Inhouse or via library? Inhouse. (Bruce) You make it sound so
easy? (Gemstone people) It is easy.

Their nightly automated process was one of the first they developed.
Originally, it collected quotes, copied them and assigned them to tasks.
Now it does much more, backing up the database, verifying a random
selection of objects that were updated during the day (the accessor specs
plus any rules e.g. bidirectional links having both ends set), user-requested
business checks, etc. This also checks sessions to see if users are in a
strange state (did someone leave for the weekend and forget they had a
transaction uncompleted?).

They keep reviewing their approach. They sometimes try something for
two weeks and see if it works or not. They have an in-house-developed
issue management system.

Northwater has to comply with regulatory standards so every change to the
system has to be documented and justified. It seems like a lot of red tape,
but they were able to implement it so that it improves their process and
reduces walkbacks. Some changes are non-business (fixing typos, spotting
better ways to code something) and they run regression testing on these and
if it passes, the change is OK. Otherwise, every code change is associated
with an issue and on release the change report captures that relationship.

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 53
Their old process was a one-week cycle. On Monday, they decided what
was to be changed. The person tasked with a given change would figure out
the migrations, package changes in a set of files, run tests, and effect the
change. However this meant that they would get no feedback till Friday,
when the release was already being packaged. A small problem meant that
the next release was a follow-up. A large issue meant delaying release. (A
good point was that the release cycle was short.)

Their new process is a two week cycle but they start new every day. If
Angela fixes an issue on Monday of the second week, the business users
must test it on Tuesday. If they do not like it, it can be pulled out and given
another couple of days work before code freeze on Wednesday for
Thursday and Friday’s release testing and packaging, after which
production is updated over the weekend.

The rule is that whoever changes a class must write the migration script for
it. All test databases are linux servers. Cron jobs update them and emails
arrive every morning telling them whether each built and how long it took.
It is better to see any issues in this mid-cycle than during release packaging.
This is one of several heartbeat emails they expect to see every morning.

Code export and VA runtime image build are triggered by a windows
scheduled task. The image is built using the VA packager. They also
package the GBS client.

They have three different types of test. Small SUnit tests check specific
functions. Large SUnit in-memory tests check the image but not the
database. Because the same code is in Gemstone and VA, they can run tests
on both. TestMentor tests on a copy of production may not catch everything
they would like to test as it is constrained to actual production data. She
would like to test on a clean database loaded with test data.

Q(Georg) You have two apps, one for VA and one for ObjectStudio. How
do your processes differ and is OS8’s ability to use Gemstone of interest?
The OS system is focused on trading and they do not like to have issues
after release so the effective release package is two weeks beforehand.

Q(Mike) Geographic distribution? The server is inhouse in Toronto. People
login from various locations e.g. New York. They could launch the server
locally to them but do not at present.

Q(Joseph) Does anyone work on Sunday and complicate your release
process? Do you have to work every second Sunday? You must check
noone is logged in plus everyone can login from home and technical
support does that on Sundays to update.

Q. Smalltalk gives you competitive edge? Yes and the management do
notice that we are managing $9 billion with just 90 people.

Q. Do large features need more than two weeks? Yes. We break them into
workable pieces that fit the cycle or they can have code that is regression

54 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
tested but not in a release.

Q. Getting your business users to test in the cycle was easy? No. They are
happy to do it for high-risk, high-change features. Otherwise, it tends to be
the Northwater business analysts, not the customers, who do it.

Expressive Testing and Code for Free, Tim Mackinnon, Iterex
Tim was in Smalltalk at Carleton University years ago then was (forced
into) Java and C#, etc. He is glad to see SUnit still there and the inspiration
of all the JUnit, NUnit, etc.

(He gave a brief demo of Dolphin’s model-view-presenter abilities by
displaying the font size with a slider to expand and contract it till he got the
ideal size for audience.) TestRunner UIs in all Smalltalks tend to give
minimal indications of what failed; you go to the debugger to see what is
happening. During test-driven development that’s OK; you are probably
working in the debugger anyway. (At university, his professor said, “If you
don’t find any errors in your code - you should be very worried!”)

His tool takes the assertion that failed and extracts some info from it, e.g.
Constraint Error: Set(‘Alice’ ‘Bob’) should include: ‘bob’ lets you see
immediately the trivial error you made.

TestResults do not contain the exceptions that raised failures. He started
expressing his expectations as Constraint objects, e.g.
(Equal to: 5) verifyWith: 8

As he produced a hierarchy of constraint objects he found he wanted not
just to check the values he got but make assertions about their distribution
e.g. that they were not all equal to one another. He noticed that whenever
he found an error he would rewrite it as a constraint.

In Java he made much use of MockObjects. (He is aware that in Smalltalk
MethodWrappers can be used for this purpose.) In test-driven
development, he creates proxies that fake up parts of the system he is not
working on yet but which the area he is working on needs to call. He
realized his constraints interact with these.
nameParser := mockery

createStrictMock: #SUnitNameParser.
...
documentor
process: ...
using: nameParser ...
expecting: [nameParser

parse: (Kind of: String)& ‘tc’
answerWith: #(‘...)].

In Java you have no blocks so the style is more upfront declaration and less
readable. The parse statement uses Kind of: and & aConstraintExpr
so the tool can use that in presenting if it fails.

These test constraints express the mock protocol so he can generate the

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 55
protocol when he starts work on that part of the system.

In future he plans to gather useful constraints (e.g. Sequence, Different,
etc.). He will look at non-simplistic code generation: could one infer
missing or conflicting test cases from your constraints?

The code is in Dolphin but is fairly generic; proxy objects can be done
differently in different dialects.

Code Measures, Tim Mackinnon, Iterex
Tim gave a ten-minute talk on code complexity. Keith Braithwaite
proposes a complexity measure that takes the log of the cyclic complexity
of non-test methods. Keith claims, based on analyses of Java code, that
things below 2 are suspicious and things above 2 are good. SUnit has value
2. Swazoo’s packages are mostly well above 2 except for SwazooPlatform.
A Dolphin utility that Tim knew contained poor code scored well below 2.

Now that Dolphin 6 is halted, Tim encouraged other vendors to replicate its
nice IDE features in their IDEs.

Extreme Validation, Leandro Caniglia, Caesar Systems
Leandro subclasses TestCase to distinguish the abstract classes
ConcreteTestCase and Validator. A Validator will have methods
validateThis, validateThat. A test... asserts that some value is
correct. A validate... asserts that some aspect is correct (by ‘aspect’
understand instVar).
self aspect: #someAspect.
self aspectVerifiesInvariant ifFalse:
[self failBecause: ‘It is not OK’].

Example: a class NormalProbabilityDistribution should never have
standard deviation of zero. ProbabilityDistributionValidator has validates:
validateSd
self aspect: #sd
self valueIsPositive ifFalse:
[self failBecause: ‘StandardDev must be positive’].

validateMean
self aspect: #mean.
self valueIsDefined ifFalse:
[self failBecause: ‘ProbDist must have mean’].

This subframework of SUnit has everything that SUnit has. However you
can write general validators on your classes:
Variable>>validate
self aspect: #name; validateNotBlank.
self aspect: ‘quantity; valueIsDefined.

and then call them in your validates:
includeValidationOf: value
self isDefined: value.
value validate
allValidationFailures do: [:each | each resignal].

56 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
You can also define general validation checks e.g. namesDoNotCollide.

Whereas SUnit verifies specific classes and methods, i.e. code, validators
validate objects. The validation happens during the application as a result
of user actions as much as of specific test running. He is not claiming that
validators are better than test cases. He is just explaining how they are
similar and how they are different. Tests check his code is correct.
Validators check his objects are valid. Validators are activated by requests
from the application and so can be left running (and so will report to) end-
users in real use as well as programmers during development, if you wish.

Every time you run a test you start from scratch recreating a set of objects
to test. You validators run on any objects your image contains, however
constructed. Running validators is much faster than running tests because
you are just checking state, not creating an object structure to test. Leandro
also thinks it needs much more skill to write tests than to write validators.

Q. What message do you show the user given that isValid just returns a
boolean? Where do you validate: in the UI or model layers? They validate
in the model layer: whenever the model changes, all its validators are run.

He looked at the example of a relational database providing objects to the
Smalltalk image, perhaps via some intermediate ‘table’ objects which are
then reified to application objects. Both the table objects and the reified
ones can be checked, the latter at a higher semantic level of course.
Validators detect bugs earlier; an object can remain broken for some time
before an application reveals that something is wrong whereas the validator
will detect the model-layer change that caused it.

He showed the petroleum application, inspected a reservoir object and ran
all its validators. Next he browsed a well, entered invalid data and the
validation framework promptly reported this. In this application they only
validate the object that the user’s current pane is viewing by default; a
screen lets all other objects be validated.

Q(Christian) Link back to input field? No; would be nice to have. (I
mentioned an example of how this could be done, described in my ‘Value
of Smalltalk’ keynote at Smalltalk Solutions 2005.)

Q(Tim) Are you forced to have observers of every aspect? No, the object
validates when it is told to do so, which mostly means when the user orders
it, but their app is also coded to validate every time the UI is refreshed.

Q(Bruce) is this code available and if so under what licence? This is Andres
Valloud’s idea originally. The framework is available in the Cincom OR
and he’s writing a book in which one of the chapters is about this.

SPORT BoF, Bruce Badger, OpenSkills
Sport is a Smalltalk Portability library and API. From the point of view of
any one dialect, it is a library. From a generic point of view, it is an API.
Using Sport, Bruce can develop applications in VisualWorks and then run

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 57
them in Gemstone with no code changes whatsoever. Sport works in
VisualWorks, GemStone, Squeak, Dolphin, Visual Smalltalk (VSE), etc.

How to port Sport: port a Sport-using utility of your choice (Bruce
recommends Hyper or PostgreSQL), attempt to run it in your Sport-free
dialect, and fix the missing things.

Ideally, Sport should shrink as dialects standardise on it. Inconsistency
between dialects will cause it to grow, which at least will make such
inconsistency visible. Extending Sport’s API is fine; all the existing Sport-
using utilities will still work. You need only ensure that your additions get
ported to all dialects. Refactoring does break code, so why refactor. Well,
some things in Sport are horrible because they expose existing nastiness;
we could have better socket structures, etc.
• Some people do not want their use of Sport to break.
• Some people will use two things that depend on Sport, so must have

any revised API released in both at the same time (or must upgrade at
the same time)

The Sport version naming scheme uses letters: A B C D. If you email, use
the letter, e.g. SportA or Sport(A).

Sport solves things that are candidates for the ANSI standardisation
process. Let’s use Sport to motivate the ANSI standardisation process.

Sport is being documented: see www.openskills.org.

Q. Do we really need an ANSI standard? Yes: one of the perceived issues
with Smalltalk is that its dialects are not compatible.

Q(James Foster) Why are the API versions separate from those of the
implementation? Because Sport is an implementation in a given dialect but
an API overall. If I change how Sport methods are implemented in a given
dialect (e.g. for efficiency or because a new dialect version has new
features to exploit), or add or correct methods in that dialect for a given API
version, that means one thing. If I change Sport methods’ signatures then I
must do so in all dialects and that means that I am changing the API.

ANSI exceptions are in ANSI so they are a prime candidate for removing
from Sport when all dialects are the same but not before.

Q(Andreas) Microsoft library versions have a proper name and then ext1,
ext2, etc. which Andreas does not find especially helpful; he wants clean
separation of concerns in version naming. Andreas also asked about
namespaces, but very few dialects support them. Gemstone and VW are the
only ones with namespaces but perhaps two examples are enough to devise
a standard. Joseph suggested that a standard Namespace concept was
agreed 7 years ago in ANSI; has anyone used it? And if not, does that mean
it is not a problem. (John O’Keefe who was also at that meeting seven years
ago thought that in fact there was no consensus on namespaces.)

58 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
Q(Niall) If, as appeared from some examples, Sport will rely on class-
based version names, how do we version extensions (e.g. extending a
Collection subclass with a Sport method)? There was discussion and
agreement to continue offline.

Q(Mike) People moved away from ANSI for business reasons. Kapital is
an example: it has several (too many :-/) DateTime implementations. Bruce
suggested Sport be an underlying DateTime, not the perfect abstraction; a
better abstraction could use it as a basis. Or its API can become an ANSI
standard adhered to by all DateTime implementations.

Q(Joseph) The ANSI standard was put together in 1998 by various people,
none of whom are doing Smalltalk now. (The last, Blair McGlashlan, was
very reluctantly obliged to halt further development of Dolphin Smalltalk
a very short while ago). We can feel competent to restart as suits us.

Q. Sport touches Sockets, DateTime and other areas; should we break it
into independent subpackages? Bruce sees ANSI as a process to arrive at a
consensus.

Q(Georg) STIC must work towards Smalltalk standardisation. In 2007-8
(i.e. till Smalltalk Solutions in June next year), STIC will make broadening
Smalltalk usage their priority. Thereafter, STIC could get involved.

Bruce recommended comp.lang.smalltalk as a place for Sport discussion.
Use Sport if it helps you; don’t if it doesn’t. Let Bruce, and others, know
how things went for you. (Gemstone uses Sport to port Squeak so e.g. Dale
could present on Gemstone’s experience of using Sport as an enabler.)

Utilities
Toothpick (SUnit) Joseph Pelrine
The LoggingFormatter lets you log your tests (or whatever) as simple text,
XML etc., formatted however you like. LoggingPolicy decides whether
you log each event or log composites subject to conditions, etc. One of
Joseph’s clients has a listener on a socket and when something weird
happens they ping the file and reset the loggers without affecting the
application. This is on VW, VA, Dolphin and Squeak (but Squeak does not
yet have the new external loggers).

Joseph demoed some scripts:

logger := TranscriptLogger new policy: ..; format: ...
LoggingMultiplexer current
addLogger: logger;
startAllLogins.

...
then he configured it to respond to an event, send the event and see the log
written to the Transcript.

You can download a log viewer or log to IRC by outputting the log to a
little Java program that writes to IRC. This could be used to note automated
builds. In production use you’d want a dedicated socket. Get all this from

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 59
his website (www.metaprog.com).

Toothpick has full documentation, unlike much else he has seen.

Custom Refactoring, Niall Ross, eXtremeMetaProgrammers
The custom refactoring project (http://customrefactor.sourceforge.net)
adds refactorings to the Refactoring Browser and usability features to the
rewrite tool. In VW7, this is add-on work. In VASmalltalk, VAST and
VW3 (both Envy and non-Envy) we are the prime maintainers of the RB
and its Envy extensions.

Where to get our releases:
• In VW7, go to the Cincom Open repository and find the ‘Tools-

Refactoring Browser’ bundle. Our versions have ‘released’ blessing
and version names ‘VW... CS... RC...’, showing the VW version they
run on, the Camp Smalltalk that the work was done at (or after) and the
Release Candidate number. (The latest is VW7.5 CS11 RC3 released.)

• Our VW7 tests are in the RefactoringBrowserTests bundle or in parcels
at our sourceforge site; match the ‘VW... CS... RC...’ version.
‘Released’ blessing-level versions have no real load warnings. (Shape
changes to Refactoring subclasses cause wholly spurious warnings in
VW7.5 and earlier. RBTestMethods has bad code meant to be found by
code critic, so will warn.) Except in pathological situations, your open
base-release RB will still work after loading our version (of course,
closing RBs before loading variants is good practice in general).
Note: the ‘Refactoring Browser’, ‘RefactoringBrowser’ and ‘Refactoring
Browser Tests’ bundles in the Cincom OR hold old versions of the RB code
which Cincom later renamed. Ignore these unless you are using an old version
of VW7; see these bundles’ blessing comments for version data.

• In VASmalltalk, VAST and VW3/Envy (and VW3 non-Envy) go to
http://customrefactor.sourceforge.net and download the appropriate
zipped .dat (or parcels) to get both our versions and base RB versions.
(VASmalltalk releases now include our current stable RB version.)

Documentation: our bundles and config maps have detailed comments.
Summaries are on our web pages. Discussions of implementation
approaches are in the Camp Smalltalk sections of my ESUG reports for
2001 and after: see http://www.esug.org/data/ReportsFromNiallRoss. Our
old wiki pages vanished when the UIUC Camp Smalltalk wiki was
spammed but have now been put back.

In the past, we have added refactorings (DynamicRename, SplitCascade,
Cascade, RenameInstanceVariableAndAccessors, etc.), rewrite features
(rewrite expressions take multiple search expressions and wildcards in
method names, refactoring changes inspector now editable), usability
features (menu for creating rewrite expressions, better error and warning
reporting, etc.), base RB improvements.

What we did this CS: Hernan Wilkinson emailed me code to address a VA

60 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
performance issue: class rename slow in very large systems; after
discussion with John Brant, a final fix was added to our next release. John
O’Keefe paired with me to solve some tests failing in Linux. Thorsten
Seitz, Katerina-Barone-Adesi, Michael Prasse and Adriaan van Os worked
with me on new refactorings. The results are:
• Improved Refactoring: AddParameter now lets you reorder where the

new parameter is added in the method and name it.
• New Rewrite: ExtractWithParameters lets you extract code leaving

behind some sections to be parameters to the new method.
• BugFixes: in VA, both our tests and the RBConfigurer now behave

better on Linux. In VW, renaming Smalltalk.MyClass then undoing the
rename caused a walkback in the base release 7.5 RB (our 7.5Base
CS11 RC2 is in the Cincom OR).

• Performance fixes: in VA, RenameClass was slow in very large
systems due to accidental duplication of checks when the RB was
adjusted to Envy. MethodWrappers had a slight infelicity, now
corrected. In VW, 'Find Class' in several packages when each package
is in several bundles was very slow due to redoing the package checks
when the same package was re-encountered in each bundle.

• Making Things Visible: in VA, RemoveParameter was not in the menu.
• UI: in VW, code to switch the 4-pane browser between viewing the

whole system and viewing a specific subset of pundles has been
replicated to the Cincom OR as ‘Internal Release’ in package
RBCustomBrowserUI. A whisker-like code tool that shows all code of
several selected methods in a single pane is largely complete in VW
and designed to port easily to VA.

Future plans: our work this CS has to be packaged, integration-tested and
released. Tim Mackinnon may port our custom refactorings to Dolphin.
Travis Griggs will review what might be integrated with base VW.
Gwenaël Casaccio may port to Squeak. ExtractWithParameter needs
generalising to ExtractToComponent.

Moose, Tudor Girbe
The new website for moose is moose.unibe.ch. Moose is moving beyond
software to general analysis tools. Moose has a repository to store models,
a FAMIX metamodel for analysing software systems. Meta is the engine in
which you describe meta-models. They have a Generic UI and specific UIs
Mondrian (see his talk last year) and EyeSee (see this year’s demo).

You can get data in by parsing your code and importing or you can write
your data in MSE (a very simple Moose format). On top of this are a huge
set of tools: Chronia, Cook (visualisation) DynaMoose (dynamic analysis),
Hapax (analyse how you name your variables) Softwarenaut, SmallDude.
And there are more: BugsLife (analyse bugs to system), Subversion (map
from it to Smalltalk via client). And there are more and more and more ...

He then showed some of the visualisations. CodeCity is a 3-d visualisation
of a system’s code, whose shapes recall a city’s towers, streets and blocks.

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 61
The map colours code based on properties (e.g. where is code that calls
SQL in my system).

Actual uses: you can map code ownership and code commits to developers.
He showed some initial graphs and then evolved them by enforcing some
ordering display lines to make it more readable. Behind visualisation there
is clustering - what is the right order of presenting data to answer useful
questions - and data collection. He showed browsing from class diagrams
to seeing their code in tooltips. He then opened Mondrian’s Easel and
showed typing a model and seeing its look immediately. Thus you can
explore data and ways of representing it.

Recently, Moose acquired a new Smalltalk importer (much faster) and
improved dynamic analysis and improved meta-descriptions. They are
working on a charting engine in Widgetry and are using Cairo.

Moose is a collective effort Stephane Ducasse, Adrian Kuhn and him; the
prior team included Michele Lanza, Sandar Tchelar and a huge list of
collaborators. At this ESUG, they founded the Moose foundation.

Code City, Richard Wettel, University of Lugano
He is researching how to display the structure of complex software
visually. The metaphor is to present classes as buildings and packages as
districts in a city representing a whole system. The colour and size of the
buildings can be assigned to represent various code-related measures such
as how many methods a class has, who uses a given facade, etc. This work
is Moose-related. He showed flying around the city. He has implemented a
simple generic query engine to locate specific classes or methods that meet
some condition ad go to them, change their colour, etc.

He uses Jun to render all this.

Q(Christian) Layout is wholly automatic or rearrangable by the user?
Wholly automatic.

Swazoo, Janko Misvek, Eranova
Swazoo (Smalltalk Web Application ZOO) is a smalltalk web server. At
the 2000 Camp Smalltalk, it merged some Smalltalk web projects
(hydrogen, AIDA/Web) and was worked on by Joseph Bocancas, Claus
Gittinger and some who went to the dark side (but Ken Trace came back
again :-). Their aim was to be on all dialects and thanks to Sport (thank you,
Bruce) this is now finally becoming true.

Swazoo sits on Sport and provides one or more HTTPServers talking to
one or more Sites (i.e. web sites) in a many-many relation, all of which can
be on one IP and one port (or on many if you prefer). One user is
AIDA/Web, which has Swazoo integrated within it (so new releases have
usually already been tested in a production environment). Swazoo 2.0 has
just been released. It is on VA and Gemstone and will be on VW and
Smalltalk/X soon.

62 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
Swazoo 2 has a new request framework (by Bruce) and streaming: input
streaming of large file uploads and output streaming when the server
changes (reverse AJAX/Comet) and when serving large files (streaming is
a popular topic today). It has become more stable and better optimised so
can mange 3Mb/sec file upload, which is probably still 10 times slower
than Apache but fast enough for many uses.

Use your Seaside or whatever on Swazoo. see www.swazoo.org.

Q. Compare Commanche and Swazoo in performance? He has only
studied the comparison with Apache.

SLAPS, Bruce Badger, OpenSkills
OpenSkills (www.openskills.org) is a global non-profit association of
individuals.

The Lightweight Directory Access Protocol is lightweight relative to
X.400 DAP, just as an elephant is lightweight relative to a blue whale. It is
a tree structure (c.f. Alfred’s talk) that runs a protocol. In LDAP, you can
say, ‘let there be a new concept’, just as in SQL you can say, ‘let there be a
new column’, or, ‘a new table’.

In LDAP, data is held in a tree, the Directory Information Tree. Why use
it? Because it is used for authentication (prove who you are), authorisation
(now I know who you are, what may you do). Any email client will use
LDAP to connect to a public mailing list. In more sophisticated situations,
people use Kerberos which lets you authenticate once and get a ticket you
can then carry around.

Why write an LDAP server? Well it looked like it would just be another
wire protocol. OpenSkills wanted member authentication, authorisation,
and to make member address books available. Using an external LDAP
server is non-trivial: you have to define a schema, have an LDIF export
format to map your stuff to it and then you must keep in synch with it.

Bruce showed some LDIF. You could write it but imagine writing the code
that will look at an object model and writing the LDIF to map its changes
into LDIF; it would be like writing an OO-SQL layer.

An LDAP server listens on TCP/IP port. The client connects and the
conversation may go like BindRequest (hello, may I use your service),
BindResponse (OK), SearchRequest (tell me about ...), SearchResultEntry
(here is info about ...), SearchResultDone (and that’s all I know about ...),
UnbindRequest (thanks, I’m done). Which would be easy enough except
that it uses ASN.1. Abstract Syntax Notation, version 1 (“I hope there is
never a 2!”) is about how you specify and implement wire protocols (how
you convert information to and from octets: ‘octet’ is a formal definition of
‘byte’). If you look at it quickly, it looks OK. Actually it is horrible.

ASN.1 is like Chinese: there is a single written form but when they speak
it is utterly different. You can encode a single ASN.1 expression on the

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 63
wire in many different ways. LDAP uses Basic Encoding Rules (many
other dialects: Canonical Encoding Rules, Distinguished Encoding Rules,
etc.). BER uses Type Length Data but sometimes it says, ‘don’t know the
length, use another approach’. Thus there is no sure way to jump around
the spec: you must parse sequentially and completely.

Bruce opened his VW image and ran to a breakpoint he had placed within
testLDAPBindDecoding (make it run, make it right, make it fast - he is
at make it run here). It created a BDU (Binding Data Unit) and got a
catalogue: a dictionary binding schema mapping numbers to their types in
the schema. You have to use bitmasks all over the octet to read it. You
consult the catalogue for these tag classes to see what the next lot of data
is encoding. “You thought that was going to be the class of thing we’ll
create. No, it is just the class of the identifier that will tell us what we will
try to create”. He stepped through these stages to get the universal identifier
which will be primitive (basic ASN thing) or compound and will have a tag
that tells us what it is. At present he does not parse ASN.1; he hand-crafts
class-side methods for the specific bits of ASN.1 he must handle. (SLAPS
probably will parse in future but for now he’s still learning.)

Finally we reached the target class which takes the whole spec as input to
parsing the octet stream. Inside a huge self printString we saw 3,
the actual bit of information that made it through all this wrapping!

As he worked on this, Bruce’ incredulity kept growing. However in the
end, SLAPS will give Smalltalk great flexibility. We will get requests into
a tree and project that tree to and from our rich object model. For example,
the OpenSkills skills tree is a tree and projecting data from it will be much
easier than generating LDIF for every view we might wanted to offer. Even
more, existing LDAP structures - posix account, address book, DNS
configuration, SMTP server configuration - will now be controllable by us.

When it is working and available, you will use it (sort of) like an HTTP
server: start server, send request, get response. It will probably be fast
enough for long-tail applications and if it is not fast enough for something
we use it to replicate to an open LDAP server, just as our HTTP can sit
behind Apache if the app is being hit a lot.

Q(Christian) Why so complex? ASN.1 came from X25 and bellheads.

OpenSkills worked on Hyper. Now, running an HTTP server in GemStone
seems sensible. Likewise LDAP use may develop. Kerberos could be
looked at. SLAPS is in Smalltalk so it will be far easier to learn.

Q. Licence? Bruce has not yet decided.

Q. As client? All ASN.1 is symmetric so SLAPS should be fine as a
Smalltalk client.

Q(Bryce) Squeak cryptography has worked on this, also VW? Bruce did
not know of the Squeak and wants to put this on any dialect so could not

64 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
just reuse the VW implementation, plus the VW one is just a client.

Miscellaneous ten-minutes presentations
Two late afternoon sessions allowed a range of projects to make 10 minute
presentations. Those not included in other sections are here.

The CellStore/XML Project, Jan Vrany
This is an XML-native database management system. The various features
are layered so that if, for example, you only need single-threaded
persistence you can remove the transaction and access control layers.

Currently, they have an XML-compliant API, and they can store 500Mb+
of XML documents. Email vranj@fel.cvut.cz if you have any questions.

Krestianstvo.org, Nikolay Suslov
Nikolay uses Squeak and Croquet. Krestianstvo is a Croquet SDK-based
learning environment. Sophie’s XUL logic says how to fill Croquet spaces
with content. Nikolay’s concern is not modelling virtual reality but adding
Croquet displays to real environments. He showed a recent Moscow
gallery exhibition, with Croquet environments appearing on gallery walls,
then moving to other walls and etc. Another project is a collaborative
curved-space explorer. They used Jeff Weak’s algorithm to render various
curved spaces. He demoed an art gallery portal.

Three Issues, Georg Heeg
Our new logo [|] is illegal in most Smalltalk dialects. Georg has made a
parcel that makes it legal by overriding a single Parser method to make a
one-line change that makes it not error when done or printed. But if he then
says ‘Format Selection’ it still fails because there are 4 parsers in VW, one
for real work, one for formatting, one for setting breakpoints and one, that
he likes best, for colour highlighting.

A second example converts Smalltalk into non-keyword syntax i.e.
horrible Java-style (presumably to show how horrible it is :-).

He did Date today inspect in VW, then Date today os_inspect
and after confirming ‘Do you want to start OS in this image?’ he saw the
OS inspector. Date today inspect in an OS-launcher-launched
workspace displays the OS inspector and Date today vw_inspect in
the same workspace shows the VW inspector.

He created a new class with one method, subclassing ObjectStudio.Object,
and typed in a TransformedSource window some seriously unSmalltalky,
lisp-style factorial code. Then he hit transform and it was in Smalltalk.

Collection Behaviour, Adrian Kuhn
When modelling a domain, we tend to create specific collection objects,
e.g. a BookList containing Books and similar. Adrian has extended
Smalltalk to support this idea. Classes have an instance-side and a class-
side. Adrian has added a group-side.

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 65
He tried to do 1 group and had the usual demo hiccough from which he
recovered to display an object IntegerGroup which applied to any
collection of integers. He added sum to it; now we can sum over collections
of integers but collection classes such as Array will still say they do not
understand sum because only collections of integers understand it.

The class of such groups is CollectiveBehavior. 20% of Moose’ domain
functionality can be held in this behaviour. His problem now is how to
extend Store so he can store this code in a Store database.

Research Track on Dynamic Languages: Smalltalk
TypePlug - Practical Pluggable Types, Nik Haldiman, Marcus Denker,
Oscar Nierstrasz, University of Bern
Marcus presented as Nik cannot be here today. He started by claiming that
static typing was good: uncompilable programs are rejected, parameter
names match their types as programs change, etc. Then he stated that static
typing is evil for the reasons we all know: cool programs (e.g. those using
reflection) can’t be written, only trivial errors are found, etc. This of course
is what we believe but we would not reject the information that static
typing would give us if it had no cost. Can we have our cake and eat it?

Gilad Bracha proposed pluggable types: optional type annotations that do
not change the semantics, simply acting as a Smalllint++ that tells us more.
Exotic type systems handle many problems that current implemented ones
do not but they are too exotic, too hard, ever to be implemented in a static
system. Pluggable types would let us experiment with how to build them.

Alas, one type annotation in an untyped base image buys you nothing. We
must somehow type the base system first. There is a sub-method reflection
framework in Squeak (see Marcus’ talk on it). Using it, Nik did three case
studies: non-nil types (this var should never be nil), class-based types, and
confined types (i.e. this instvar is private: never pass it outside the class).

Marcus demoed the non-nil type system.
Object subclass: #DemoLine
...
typedInstanceVariables: ‘... endPoint <:nonNil:> ...’
...

Their browser navigator has an additional pane that shows types. Selecting
a setter method that does not guarantee the type shows a warning.
Annotating the method return with nonNil type makes the warning vanish.

OK that was a few methods; how to do the whole Squeak image? They
looked only at the span of annotated items, used much type inference and
made explicit type casts for the rest. They also allow external annotations,
since they need to annotate the base libraries but have no wish to maintain
a branch of the base, so they add types that are saved as declarative
Smalltalk code in a separate package.

Q(Niall) If the base code changes, does your system detect this? Yes.

66 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
Where next? The first thing they need is better type inference. They want
better algorithms. They want to integrate with RoelTyper’s heuristic
inference. The second is to be able to check reflective changes.

Q(Christian) External annotations: can we not use them everywhere rather
than annotate the code anywhere? That could be done. The external
annotations are keyed to the type system that defines them.

Q(Niall) Do you plan to use dynamic type collection (utilities to do this
exist; you would need to add merging of data from many images)? It is
worth looking at (he would also like dynamic checking of annotated types).

Q. How can you tell if your type system actually works? There was
discussion. I felt the answer was that they could only tell in same way that
we tell that Smalltalk is good, by using it and seeing what benefits accrue.

Feature-driven Browsing, David Rothlisberger, Orla Greevey and
Oscar Nierstrasz, Software Composition Group, University of Berne
David is a student in the software composition group. In Pier, actions such
as login, add page, copy page, etc. are all features. A feature is something
a user can trigger. If a user finds a bug in e.g. copy page. the maintainer
must find where that feature is implemented, so fixing the bug requires
searching to see what code supports that feature. He proposes representing
features as a tree of method invocations. The idea is to collect the called
nodes dynamically while exercising the feature, then display this
information in the IDE.

Features could be selected by observing user actions or by executing test
cases. They have implemented a feature browser in which the user selects
a set of features. Called methods are represented by boxes, colour-coded to
indicate which features are used in every feature of the set, which are
unique to a single feature and which have various partial degrees of
coverage. Other browsers are
• an adapted class browser that only shows the methods the feature uses
• a called-method tree display
He demoed, loading Pier and running some test cases for it. Some of the
tests failed. He looked at a failing assertion, then selected its test case class
and invoked his feature browser on all its five tests. We saw the diagrams
of the methods called in each of the five tests, colour coded for coverage
between the tests. Only one test failed so he looked first at methods unique
to that test. He opened its method tree browser (also colour-coded) and thus
examined them and found the bug. (He could also have opened a standard
refactoring browser in which only methods called by that test were visible.)

They experimented with fixing bugs using standard and feature-oriented
browsers for a group of 12 students. The feature-browsing group found the
bugs 56% faster and fixed them 33% faster. Of course, this was an artificial
experiment with deliberately-introduced bugs.

In discussion, it was noted that often common methods fail in one test and

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 67
not another because different data is presented, or different state is held, in
the two cases, but the colour view of what is unique and what is common
is useful, as is being able to view an RB of just what methods a test called.

Q(Georg) in VW, DakarTesting also has the feature of mapping the test to
the methods that it called.

Bridging the Gap between Visual Morphic Programming and
Smalltalk Code, Noury Bouraqadi,
Morphic makes all GUI elements into objects you can handle, move,
resize, send messages, etc. He showed us doing menu New > New Morph
giving a catalogue of morphs he can drag to the screen. Selecting halos lets
you change a morph or write a script for it in EToys. He created a script
(ellipse fowardBy: 5. ellipse turnBy: 5) all by drag-drop; he
did not write a line of Squeak.

This visual way of writing EToys scripts does not scale up to complex
applications. The set of expressions is limited and it is harder to reuse code
within the visual environment. By contrast, real Squeak applications are
built by programmatic GUI construction; the GUI toolset is not especially
rich, just because the programmatic interface is so powerful.

They want to build real applications whose GUIs are built wholly by direct
manipulation of morphs, while the model layer is built in the standard
Smalltalk way. They want GUI code reuse. They want the GUI code
naturally stored with the rest of the project.

They have created Easy Morphic GUI (EMG). A mediator connects a
model layer built by standard Smalltalk coding and a GUI built in morphs.

He showed building a Counter and giving it a GUI via the EMGGuiMorph
subclass CounterGUI (EMGGuiMorph is both a mediator and a morph).
The CounterGUI is then the container for other morphs which complete the
application GUI. CounterGUI is created programmatically with an instvar
counter that holds its model. He then opened it, using its halos to set size
of the plain rectangle that first appeared.

He then created two button morphs for + and - and dragged them to the
CounterGUI morph, where they jumped to the LHS because that was the
layout policy. He changed the policy to free layout and placed them where
he wished. He also added a morph displaying a number 0. He set the
buttons to send increase, decrease to the CounterGUI morph (via
menu and dialog). He set the number to get the result and the UI now
worked. He showed the mediator methods increase, decrease now in
the CounterGUI class.

Q. How does the mediator know to update its display when a button is
clicked. It is a dependent of the counter and gets update changes.

Reuse has two approaches. One is embedding, e.g. the drag-drop we just
saw. The other is to clone all source morphs to a destination morph,

68 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
preserving the link to the source and updating when the source changes.

He demoed this by building a circular counter. He showed the very simple
CircularCounterGUI class he started from, then cloned statically (dynamic
clone also supported) from CounterGUI to get the same interface. He then
changed the counter GUI and saw no change of the CircularCounterGUI.
He then reset the displayed CircularCounterGUI to have a dynamic clone
of CounterGUI. He then changed the latter and saved it, at which point the
CircularCounterGUI changed to match (usual demo hiccough; re-layout
did not stay within the outer morph as layout policies were not the same).

They use a null object pattern to handle missing morphs, which is a
common situation early in development. UIs is serialised and stored as
string in class method on the mediator.

EMG is very new and needs further work. They want to integrate with
morphic wrappers, integrate better with morphic and EToys, and show
links between morphs visually.

They are now using it on larger examples e.g. simulating robots. It seems
to meet their needs. See csl.ensm-douai.fr/EasyMorphicGUI.

Q. How do you visualise references between morphs? EMG can have
morphs reference each other circularly, etc.

Q(Tim) Morphs seem to have intimate knowledge of your mediators (for
example, the demoed views knew about increase and decrease). By
contrast, Dolphin’s Model-View-Presenter pattern keeps them separate and
so allows much reuse of mediators; will you leverage that? There was
discussion with more discussion offline. Tim also mentioned that Dolphin
serializes with symbols included so that refactoring will work (e.g. if you
renamed the increase method).

Q. EToys integration? In April he forgot his watch at a conference so built
an alarm model. He showed this, then used EMG to make the colon blink
when the alarm is running.

Redeveloping with Traits: the Nile Stream trait-base library, Damien
Cassou, Stephane Ducasse, Roel Wuyts, LISTIC University of Savoie,
IMEC, Leuven and Universite Libre Brussels
A trait is a group of reusable methods. A trait has some methods it
implements and some it requires. They provide a form of multiple
inheritance and handle conflicts when same-name methods are inherited.
Traits are implemented in Smalltalk and also are or will be in Fortress,
Scala, Python and Perl 6.

TMagnitude implements > >= <= ... from < and =. They can be used by
several classes, Date, Number, etc.

Traits have never been used to design a framework from scratch. They
want to research issues of good trait granularity, etc., so therefore created

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 69
the Nile Stream library. Streams are naturally modelled via multiple
inheritance. Writing nextPut:, nextPutAll:. Reading next, next:,
peek. Positioning position:, reset, setToEnd. There are existing
implementations, some Trait-based. In the Squeak single-inheritance
implementation, various methods are provided at top-level, then disabled
at lower levels, then re-enabled in ReadWriteStream, etc.

Nathaniel Scharli refactored Streams using Traits in 2003. This was a pure
refactoring. The new implementation, Nile, is based on a core of traits: the
Reading, Writing and Positioning Traits. Then there is the collection-based
trait and one class for each original Squeak class. The also added file-based
streams, random number generator stream, a SharedQueue stream, etc.

TGettableStream is used by 22 classes. TCharacterWriting requires 1
method and provides 8. The whole has 18% fewer methods, 15% less byte
code and no unwanted behaviour. Nile is always as fast as the Squeak
implementation and sometimes faster: traits do not compromise
performance.

Issue: traits require a lot of accessors that may not be needed by a class-
based implementation. You may also require two setters / getters, one the
class’ one with initialization or lazy effects, another the trait’s simple one.
There are more entities: 11 traits and classes compared to 4 (larger and
uglier) classes (Stream, PositionableStream, ReadStream, WriteStream) in
the original Squeak.

Thus they feel they have really improved the design but want to do further
work. Nile has hundreds of tests and can be used today.

Q. Why need extra accessors? There is a paragraph on that in the paper.

Q(Andreas). Right balance between trait and class; has Nile gone too far
putting all the behaviour on the traits and using classes only for
composition? They chose the traits to reflect ANSI Smalltalk which
defines Streams by protocols, not classes. (Andreas) the same issue occurs
in typed languages, e.g. Java has heavy use of interfaces in their Streams;
have you compared with them? Not yet.

Q(Thorsten) Observation: if we had real multiple inheritance as in Eiffel,
perhaps just by a mechanism for pushing the state to other classes, this
would solve the same problem.

Q. peek could be provided via self next; position: -1 ? Yes.

Transactional Memory for Smalltalk, Lucas Renglii, Oscar Nierstrasz,
Software Composition Group, University of Berne
Smalltalk gives you Semaphore forMutualExclusion (all dialects)
and RecursionLock new (some of them) and Mutex (Squeak only; lets
processes wait without blocking, etc.). Using these can be complex.
Misusing them can lead to deadlocks or starvation, or to priority inversion

70 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
when a low-priority process is in critical section.
tree := BTree new.
lock := Semaphore forMutualExclusion.

lock critical: [tree at: #a put: 1].“writing”
lock critical: [tree at: #a].“reading”

Transactional means making a block atomic, i.e. write-access runs in
isolation and read-access can just be done ordinarily.
tree := BTree new.
[tree at: #a put: 1] atomic.“runs in isolation”
tree at: #a.

They implemented this with lazy code transformations, method
annotations and context dependent code execution. Their runtime engine
decides when to execute in transactional or non-transactional mode.

CompiledMethod subclass: AtomicMethod (uses framework of Marcus
Denker). AtomicMethods are created lazily as needed. As soon as we enter
the transactional context we must stay inside it to completion. Therefore
they prepend all relevant message sends, so that, for example,
BTree>>at: aKey put: anObject
| leaf |
leaf := root leafForKey: ...

transforms, with all the messages it sends, to:
BTree>>__atomic__at: a Key put: anObject
| leaf |
leaf := root __atomic__leafForKey: ...

State access must also be transformed:
leaf := root __atomic__leafForKey: ...

becomes
leaf := (self atomicInstVarAt: 1)

__atomic__leafForKey: ...

This works for over 90% of cases but some code must be protected from
this. Their own infrastructure code must not be changed (to avoid endless
recursion). Exceptions must be passed out and execution contexts used by
exception handlers are not transformed. There are many primitives that
improve the speed by directly accessing the state and the atomic must call
the replacement code or their code. Variable-size object accesses must be
treated as message sends to be tracked.

Every system process may have one active transaction. If activated, it
tracks all changes to objects touched inside the atomic block. A hash map
maps the previous objects to the changed ones for instvars (by far the most
common case). All the changes are mapped to the working copy during the
atomic block; on clean exit, these are mapped back to (i.e. overwrite) the
originals.

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 71
He showed some benchmarks: method invocation is equally fast for normal
methods and half as fast for special byte code methods. Instvar read and
write is massively slowed (by 20 times for named instvar read, 19 times for
named instvar write, 18 times for indexed instvar read, 17 times for
indexed instvar write). He then showed N concurrent edit operations in
Pier. Standard Pier uses a global lock, which works fine for up to 20
processes and slows for more. The atomic case was a consistent 200ms
slower than the global lock. With 2 cpus it should have half the angle of
increase so should overtake the global case (in theory, but no Smalltalks
exploit multiple cores today).

He sees this being used in concurrent applications, in atomic source code
loading and in context-oriented programming.

Q(Georg) This was demoed 21 years in Gemstone; what is different?
Travis answered: Gemstone does it in the VM; this shows how it can all be
done in the image.

Q(Christian) Why will two CPUs speed things? During the transaction
everything works on copies and only the commit phase needs to be atomic.
This is usually a much shorter time than the whole atomic code.

Q.(Thorsten) Your read appears trivial but it is in fact a retry? Yes, limited
times. It could be smarter, checking whether objects have been touched.

Q.(Alan) what happens in atomic commit; you block everyone? Yes.

Q. Nested transactions? Not supported; all is handled in the outer
transaction.

Q. Primitives? Squeak has so many that it is not possible to check
completeness generally. We are sufficiently complete for Pier but another
use would uncover more work to do.

Research Track on Dynamic Languages: Python, PyPy, HALO, AmbientTalk
Context-oriented Programming: Beyond Layers, Martin v Lowis,
Marcus Denker, Oscar Nierstrans
(This was a Python talk.) Martin started by explaining COP before
explaining how they have gone beyond it. Programs have contexts:
• environment state data
• what user is accessing the system: e.g. an administrator may have

access to different facilities from others, which can be implemented by
layered methods, and ordinary users may each access their own user-
specific data, which layered methods are not suitable for implementing

• mode of execution: e.g. rendering may depend on the output device.
Method layers add to Object-Oriented Programming the idea of a group of
classes and methods making a layer whose contents are all used together in
a dynamic execution scope. A class can have some of its slots and some of
its methods in a layer, others outside it. Layers can be explicitly activated

72 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
by a code block that turns them on or off.

An example is a web client whose web server’s behaviour can vary
depending on the user agent header. An automated web browser may need
to act as a user agent. If the client consists of multiple modules each using
different software layers to access the underlying HTTP libraries then you
cannot pass the user-agent info. If the client is multi-threaded, a global is
not a solution. This happens in Python where the HTTP library has just
these limitations.

A with: statement (enter/leave behaviour, c.f. method wrappers) can let a
method layer send the user-agent string in the HTTP request even though
the called method does not pass it explicitly. A new class can inherit from
a class and from a layer to augment the base class with the layer features.
Its methods have the same name as their supers with extra parameter
context. He talked through how ‘before’ behaviour could add the user-
agent header or (via ‘instead’ behaviour) suppress any other user-agent
headers added.

The above is what layered methods are in Python today. Martin has added
implicit activation: layers have conditions and when the environment
satisfies them, they are activated (in contexts where they have already been
listed as available layers).

This research looked at what layers are used for today to find patterns.
They assumed that caller and callee run in the same context: a layer will
apply to both or neither. He studied three examples. Two web apps
(Django, Roundup) needed to handle the ‘current request’ notion. They
were passing parameters representing this context through many layers.
Another application used dynamic variables (variables that were specific to
a given session/thread) accessed via with: calls attached to appropriate
methods; the effect is to hold the latest value set in a thread-specific way.
He looked at method wrappers in Squeak and implemented dynamic
variables similarly in Python.

He concluded that dynamic variables solved cases that method layers do
not handle well. Dynamic variables use thread-local storage and are
accessed by doing a stack walk.

Q(Christian) The combined semantics is hard to follow; can we avoid that
by simply modelling the problem better and ending the need to supplement
with layers? There was discussion; Julian thought not.

Q(Andreas) Often Georg Heeg find themselves mapping (or advising on
mapping) refactoring single-user applications into multi-user applications.
They sometimes use thread-specific data to do this conversion. There is an
analogy.

PyPy: How not to implement VMs for Dynamic Languages, Armin
Rigo
Armin is interested in how to implement complicated dynamic languages

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 73
in the context of limited resources. Smalltalk can usually be implemented
in a small core VM since mostly it is written in itself and there are relatively
few primitives. By contrast, Python needs a large VM containing e.g.
dispatch tables and much else in C code. Python itself contributes relatively
little to the ability to run Python.

So if you are not a huge company who can afford to spend a lot
implementing a variant VM to study something, what can you do.

PyPy’s architecture has a PythonInterpreter written in a very high level
language (not having to address memory management and suchlike),
which is then compiled down to C. Using their framework, they can
generate from this a pypy-c standard-looking Python compiler in C (and
they can generate a Prolog, JavaScript or Scheme compiler similarly).

He demoed the approach for an interpreter of a tiny language. The
interpreter loop was very simple, just iterating round bytecodes. He
showed its code, then started the framework’s translation of it. The
interpreter has no type annotations so the framework performs type
inference on it. Python does not fix even which fields are allowed to exist
on instances so there is a lot to infer and no reflective features to exploit in
the high-level language, which is effectively a restricted subset of Python
(so would run on any Python compiler).

Next you have two paths. You can specialize for an object-oriented
environment (CLI, JVM or JavaScript) or for a low-level environment (C,
LLVM). The output from this is handed to your choice of various backends
which create the code for your chosen environment. Helpers deal with
specific issues: for example, C is unfriendly to advanced garbage
collection, so a helper pushes references into functions as necessary.

So far he has simply turned an interpreter into a more efficient interpreter.
Any interpreter can be converted into a just-in-time compiler. Both walk
the bytecode to produce machine code but the JIT eliminates the loop by
treating the bytecode as a constant and propagating it inside the function.
You need to write 10 or 20 hints but that is OK in the context of generating
a 20kloc Python VM. For example, the interpreter treats SmallIntegers like
any other class; your hint may make them tagged in the compiler. The
original interpreter is also retained in the VM since JITs are good but you
don’t want to just-in-time compile everything.

He had the usual demo hiccough while trying to make the generated VM
execute 2 + 3. [Niall: in Smalltalk, the convention is to execute 3 + 4 in new
VMs; Smalltalk, always ahead. :-)]

Q(Stephane) what is the impact of the language you want to implement?
They have validated this approach for Prolog, a language unlike Python. It
is much easier to produce a JIT compiler than a normal one because a JIT
can get feedback from the environment at runtime. This stopping and
waiting for runtime info is the same approach as the Java Hotspot
compiler’s polymorphic inline cache usage.

74 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
This is an approach which was chosen for large VM creation but could be
applied to small VMs like Smalltalk.

Q. If you started all over again but with Smalltalk instead of Python, what
would you change? He would use the same general approach. They wrote
the type inference and backend in parallel and might distribute tasks
between them differently in a new case.

Details are on http://codespeak.net/pypy. They develop in Sprints,
programming camps; there may be one in Berne or in Germany soon.

Forward-chaining as an implementation strategy for the history-based
pointcut language HALO, Charlotte Herzeel, Kris Gybels, Pascale
Constanza, Coen de Roover, Theo d’Hondt, Vrije Universiteit Brussels
Charlotte works on HALO: History-based Aspects using LOgic. Aspects
aim to allow you to decompose your program in several ways, not just one,
so that concerns that would otherwise be scattered in the main functional
decomposition can be united. In practice this means before, after, around
type behaviour addition. She talked through a Java-oriented example of
adding concerns to account crediting and debiting operations.

She showed some CLOS pointcut code (to create user, set username, etc.)
re-expressed as logic facts. These facts can then be chained. HALO allows
temporal relations (most recent, all past, etc.) so that, for example, the
sequence login -> buy -> checkout -> logout is valid whereas invalid
sequences will not match. These temporal predicates are higher-order
predicates: you put the particular temporal chains in as their arguments.
Other predicates can define things like discounts for specific promotions,
etc., and so be unified with users that match the discounts’ conditions.

She showed the architecture: a base of predicates and a fact-base of
specifics are acted on by the inferencing engine.

She then looked at backward chaining versus forward. Backward would
launch a specific rule (e.g. discount? user? rate?) and try to unify for the
terms. She ran the rule from the slide (her slides were in Squeak) and
showed the query trying many invalid cases before finding a valid one.
Forward chaining starts from a known fact (e.g. the user has logged in) and
seeks forward to relevant predicates. The effect is that forward chaining is
stateful (i.e. it caches) because all the states it accepts at each stage are valid
whereas backward is not performant and cannot cache because it never
knows if any of the data of any intermediate stage is valid in itself.

They use forward chaining and conserve memory by at each stage caching
only known valid states. She showed some benchmarks for an eCommerce
application written in HALO, comparing all facts generated to the much
smaller number that had to be kept in memory. She then demoed this app
and showed the various HALO tools.

Q. This is based on CLOS; could you do it in Squeak? Yes; all you need is
to be able to wrap ‘events’ (i.e. methods) such as instance creation.

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 75
Linguistic Symbiosis between Actors and Threads, Tom van Cutsem,
Stijn Mostinckx, Wolfgang de Meuter, Vrije University Brussels
AmbientTalk is their OO domain-specific language, implemented in Java,
to program mobile networks. It is an event-based language. How can you
combine this with standard OO languages, e.g. Java. He first showed the
problem. If you simply embed AmbientTalk calls and callbacks at various
points your OO code then you may get race conditions, violating the event
model’s expectation that events will be executed serially without shared
state between event processes.

The E programming language is an object-oriented scripting language.
Actors have message queues and internal event-processing loops that takes
events from the queue and sends them to objects (standard OO-style
objects) within the actor. Local objects are those hosted by the actor;
remote ones are hosted by other actors. Only asynch messages can be sent
to remote objects (by adding them to its actor’s message queue). In this
system, actors cannot deadlock each other.

Java is both a symbiont language and the underlying implementation
language. Thus it is easy to invoke Java objects as native objects in
AmbiantTalk (using Inter-language Reflection) via various methods.

Mapping AmbiantTalk to Java is easy. If an AmbientObject wants to add
something to a Java collection, that happens in a thread. But Java shared
state means that a synchronised collection can nevertheless block. If there
is a callback, e.g. ordered collection will call compareTo on another
previously-added AmbiantTalk object, this callback can be done
synchronously so raises no problems.

They wanted to have AmbiantTalk and Java unit tests. AmbiantTalkTest
implements the interface for the test so then AmbiantTalk and Java tests
can all be in the same test suite and run. However the Java test runner
cannot just enter the AmbiantTalk actor so they provide a wrapper which
queues the call in the message queue. Thus Java thinks the call happens
synchronously but the Actor performs it asynchronously.

The documentation of event-driven systems in Java, e.g. ActionListener,
says ‘make the event terminate as soon as possible’ :-/. In their symbiosis,
as before, a wrapper takes the task of adding the event to the actor’s event
queue and immediately returns as far as the external Java invoker is
concerned.

Thus actors become threads when they call to Java and wrappers protect
Java calls to actors from waiting on the asynch.

They have a PhD student trying to implement the self/squeak morphic
interface in AmbiantTalk. See http://prog.vub.ac.be/amop.

Q(Mike) What are effect of bugs in misprogrammed concurrent Java code?
Yes, bugs can spread but at least they cannot corrupt AT actor.

76 CS12 and ESUG 15, Lugano, August 27th - 31st, 2007
Q. Is it worth the effort? The student implementing Morphic took a day to
get drag-drop of morphs.

Q. Scalability; what happens as you add more actors? Some papers by other
groups indicate major speed ups, similar to Erlang with their millions of
concurrent processes, whereas JVM dies on 10,000 threads.

Q. Is the motivation of the symbiosis to reuse existing Java code? Well, as
a small research lab of two Ph.Ds, they cannot rewrite all existing libraries
in AmbiantTalk even if they wanted to.

Talks I missed
All these were in the Research Track.

Changeboxes, Tudor Girbe
Change boxes are immutable objects that encapsulate changes and behave
in some ways like classboxes. They have studied merging changeboxes and
applying changeboxes to changeboxes.

Change-oriented Software Engineering, Peter Ebraert
They modelled changes types (parameter changes, behavioural entity
changes, etc.) and the relationships between changes. Thence they
extended the star browser to capture/record and browse change hierarchies.

Object-Flow Analysis - Taking an Object-centric view on Dynamic
Analysis, Adrian Lienhard, Stephane Ducasse, Tudor Girba
They capture all references to an object and track the transfer of these
references. They have studied various ways of representing object flows.

Other Discussions
Bruce remarked that it was great ESUG and thanked the organisers, which
others warmly seconded.

The Moose association was formed (administered under Swiss law).

There was a lot of offline discussion of the future of Widgetry and Wrapper.
Some who have used Widgetry a lot, e.g. Christian, are impressed with
what it can do and plan to continue using it. For my part, I regretfully
understand the concerns of existing VW customers, and the general logic
that evolving an existing framework is much more the Smalltalk and XP
style than big-bang replacement solutions.
• Had there been the opportunity, I would have greatly enjoyed the

challenging task of helping to build the refactoring utility that would
have converted Wrapper UIs to Widgetry ones. (Both the enjoyment
and the challenge would have enhanced by the fact that the utility
would have had to perform to a very high standard.)

• Christian will work on a wrapper to let Widgetry widgets be used
within Wrapper UIs (since the conference he has published to the OR).
He will also start a Widgetry user group.

CS12 and ESUG 15, Lugano, August 27th - 31st, 2007 77
Tim Mackinnon (a former ThoughtWorks consultant) was very impressed
with CMSbox, as were others. This application, like Dabble DB but in
different ways, shows what Seaside can do.

I demoed my multi-threaded testing utility and model-layer / UI-layer
testing pattern to interested parties (c.f. my Smalltalk Solutions 2007 talk).
I also ported Pier to VW, helped by Lucas and by Dale, who now has a lot
of experience porting from Squeak.

ClearStream, a VA user, does work for DeutcheBourse (the Germany Stock
exchange).

Conclusions
My ninth ESUG: great fun in the most scenic location since Bled at least.
• Seaside 2.8 combines great features with great performance, footprint,

etc. Cmsbox and DabbleDB are advertisements for what you can do
with Seaside.

• The latest GLORP work makes the exploratory modelling paradigm
very available for RDB work, leading immediately to implementation:
complex schema mappings could be quickly modelled in GLORP and
then effected, with performance tweaks within GLORP as needed.

• Existing Smalltalk apps seem buoyant.

* End of Document *

	Style
	Author’s Disclaimer and Acknowledgements
	Summary of Projects and Talks
	Camp Smalltalk 12
	The Custom Refactorings and Rewrite Editor Usability Project
	Sport
	Seaside Applications
	Exubery

	ESUG and STIC Activities Reports
	ESUG Activities Overview, Michele Lanza, Stephane Ducasse
	Promoting Smalltalk, Smalltalk Industry Council
	ESUG Board
	Smalltalk Awards Ceremony, Noury Bouraqadi, Joseph Pelrine
	Smalltalk Summer of Code
	Squeak by Example book

	Applications and Experience Reports
	Exploratory Modelling, Andreas Tonne, Georg Heeg
	Capture Accurate Solution Requirements with Exploratory Modelling, Rolf Ehret, SAP
	Honourable Squires, Uwe Leibold, Torsten Happ, AMD, Taylan Kraus-Wippermann consultant from Georg...
	Managing Business Process with Smalltalk, Janko Misvek, Eranova
	SqueakBot: a pedagogical platform for educational robotics, Julien Bourdon (Planete Science), Sev...
	From One Tree to a Forest, Alfred Wullschleger, Swiss National Bank
	Impromptu demo of CMSbox: the Netstyle Content Management System, Adrian Lienhard, Netstyle

	Application Frameworks
	Seaside, Lucas Renglii, www.lucas-renglii.ch
	Advanced Object-Relational Mapping with GLORP, Alan Knight, Cincom
	Post-talk demo: GLORP schema-reading, Alan Knight, Cincom
	Ballooning with Cairo, Travis Griggs, Cincom
	Application Frameworks: an Experience Report, Arden Thomas, Cincom

	Vendor Reports
	What’s new in Cincom Smalltalk, Alan Knight, Cincom
	VASmalltalk, John O’Keefe, Instantiations
	Free GemStone / Seaside in Linux, Monty, GemStone
	GLASS: Gemstone Linux Apache Seaside Smalltalk, James Foster, Gemstone
	Impromptu OS8 Demo, Georg Heeg
	Paolo Bonzini, GNU Smalltalk

	Compilation Research
	Reflectivity: sub-method reflection, Marcus Denker, Philippe Marschall, David Rothlisberger, Nik ...
	Squeak VM Performance, Bryce Kampfjes
	Exupery, Bryce Kampfjes

	Java Connectivity
	Calling Java - The JNIPort Framework, Joachim Geidel, blueCarat Consulting
	Cava := Eclipse asSmalltalkPlugin, Joachin Brichau and Coen de Roover, Universities of Louvain an...

	Development Processes and Frameworks
	Working Smarter not Harder: Development Tools, Processes and Automation, Angela Wilson, Northwate...
	Expressive Testing and Code for Free, Tim Mackinnon, Iterex
	Code Measures, Tim Mackinnon, Iterex
	Extreme Validation, Leandro Caniglia, Caesar Systems
	SPORT BoF, Bruce Badger, OpenSkills

	Utilities
	Toothpick (SUnit) Joseph Pelrine
	Custom Refactoring, Niall Ross, eXtremeMetaProgrammers
	Moose, Tudor Girbe
	Code City, Richard Wettel, University of Lugano
	Swazoo, Janko Misvek, Eranova
	SLAPS, Bruce Badger, OpenSkills

	Miscellaneous ten-minutes presentations
	The CellStore/XML Project, Jan Vrany
	Krestianstvo.org, Nikolay Suslov
	Three Issues, Georg Heeg
	Collection Behaviour, Adrian Kuhn

	Research Track on Dynamic Languages: Smalltalk
	TypePlug - Practical Pluggable Types, Nik Haldiman, Marcus Denker, Oscar Nierstrasz, University o...
	Feature-driven Browsing, David Rothlisberger, Orla Greevey and Oscar Nierstrasz, Software Composi...
	Bridging the Gap between Visual Morphic Programming and Smalltalk Code, Noury Bouraqadi,
	Redeveloping with Traits: the Nile Stream trait-base library, Damien Cassou, Stephane Ducasse, Ro...
	Transactional Memory for Smalltalk, Lucas Renglii, Oscar Nierstrasz, Software Composition Group, ...

	Research Track on Dynamic Languages: Python, PyPy, HALO, AmbientTalk
	Context-oriented Programming: Beyond Layers, Martin v Lowis, Marcus Denker, Oscar Nierstrans
	PyPy: How not to implement VMs for Dynamic Languages, Armin Rigo
	Forward-chaining as an implementation strategy for the history-based pointcut language HALO, Char...
	Linguistic Symbiosis between Actors and Threads, Tom van Cutsem, Stijn Mostinckx, Wolfgang de Meu...

	Talks I missed
	Changeboxes, Tudor Girbe
	Change-oriented Software Engineering, Peter Ebraert
	Object-Flow Analysis - Taking an Object-centric view on Dynamic Analysis, Adrian Lienhard, Stepha...

	Other Discussions
	Conclusions

