# summary of smalltalk message forms and intentions 

Alan C. Kay<br>Xerox Palo Alto Research Center<br>August 1974

Of the three parts from which SMALLTALK communications are bullt-a message form, its intent, and the actual method used to carry out the intent-oniy the first two are shown in this note. The methods have been, completely suppressed irregardless of how simple they might have been to say.

SMALLTALK is based on a simple yet comprehensive model of the universe: there are only objects which contain local memory (or state); the objects communicate by sending and receiving messages (which are also objects): the objects are defined by a class description which is a collection of properties common to each momber of the class and is specifled by giving recognizers and replles to only those messages to which an object in the class is willing to respond.

## MINOR DETAILS

a. To load your disk pack: If the switch on the left and the light on the right don't say "load", then push the switch to "load" and wait for the light. (A previous user will leave a note on the Keyboard if this is not OK.) Pull the door open and remove the disk if there. Slide your disk in, close the door and push switch to "run". In about 20 seconds, the "run" light should come on and your pack is loaded.
b. To start SMALLTALKING; Look for a little switch on the Keyboard...either behind near the cable or on the right underside. Push it. The screen should go blank and then ask for your name. Type it and push "doit" <line feed>; a prompt (n) will be displayed and you are ready to go.
c. The font editor allows us to have considerable flexlbility in choosing iconic representations for symbols. Unfortunately, the plastic tops of the keys do not change so readily. Here are the current carrespondences between SMALLTALK symbols and keys.

[^0]```
%
| 1, = ?, <linefced>,
. i, ? ~, \ $
```


## model of a smalltalk class description

names in the local dictionary of the class


In the description which follows，＇00D＇，＇＇，＇．．．＇，are not currently part of SMALLTALK but are used to stand for arbitrary SMALLTALK objects such as＇3＇， ＇$x$＇，＇+ ＇，＇（ $a b c$ ）＇，and so forth．

MESSAGE FORMS INTENTIONS
（미．．．）
$\sqrt{ } / \sqrt{\text { and }} \ldots$

6．．．
₹．．．
\％
B
ก ．．．
．．．$\rightarrow$（0ロロ）
（，），may be used to group SMALLTALK objects．
Send $W_{\text {the }}$ message DOD ．．．
（messages can ba terminatea＇－by＇．＇）
Consider the next thing literally－－acts like＇．．．＇in English

Look to see if next thing is literally in the message． If not，return false．

Reccive the value of the next expression in the message．
Receive the next thing in the message literally．
Return the value of the next thing to the sender．
If the value of ．．．is not false，then evaluate $00 \square$ and lenve next higher level．Otherwise continue to the right．

Objects will return themselves to the sender if no explicit $\mathbb{\|}$ ．．．is given．
to name $\times y$ ：printname

| isnew $\boldsymbol{\rightarrow}$（ $(1)$ | Receive text of the new name into＇printname＇． Return a unique reference to this object． A name starts with a letter and consists of any number of further letters and digits． |
| :---: | :---: |
| $\varangle \text { is } \Rightarrow\left\{\begin{array}{l} \nabla ? \Rightarrow(\ldots) \\ \nabla \text { name } \Rightarrow(\ldots) \\ \text { I.n false } \end{array}\right.$ | Answer is＇name＇ <br> Answer is＇true＇ <br> Answer is＇false＇ |
| ＊print $\Rightarrow$（．．．） | The text in＇printname＇is sent to the display |
| $\sigma+\Rightarrow$（8 ．．．） | Look up this name in nearest dictionary and enter the value $B$ |
| 『 eval $=$（．．．） | Lookup this name in nearest dictionary and evaluate the value |
| $\leqslant$ chars $\Rightarrow$（．．．） | Return the text in printrame |
| $\nabla=\Rightarrow$（B．．．） | If this name is not the same as f，return false： |

to number $x y$ : val : nprint
'nprint' is common to all numbers and helps print them.

| isnew $\Rightarrow$ (8...) | Receive textial form of the number which is made into an Internal form that is understood by the ALTO and entered into 'val'. A number starts with a digit and consists of zero or more further digits. |
| :---: | :---: |
| $\checkmark \text { is } \Rightarrow\left\{\begin{array}{l} \sigma \text { ? } \Rightarrow(\ldots) \\ \text { on numbers } \\ \text { D. } \cap \text { false }) \end{array}\right.$ | Answer is 'number' <br> Answer is 'true' <br> Answer is 'false' |
| *print $\Rightarrow(\ldots)$ | The internal form in 'val' is made back into text and sent to the display. |
| $\sigma+\Rightarrow$ (g...) | Return the sum of the number and $\mathfrak{B}$ |
| $\checkmark-\Rightarrow$ (8...) | Return the difference of the number and $\beta$ |
| $\leqslant * \Rightarrow(\mathbb{1} \ldots)$ | Return the product of the number and $g$ |
| $\leqslant / \Rightarrow$ ( $\mathrm{B} \ldots$ ) | Return the quotient of the number and fl. |
| < rem $\Rightarrow$ (g...) | Return the remainder of the number and $B$ |
|  | Return false if the number is not less than , otherwise return the number $^{\text {a }}$ |
| $\beta\rangle \Rightarrow(8 . .$. | Return false if the number is not less than gi otherwise, return the number $^{\text {o }}$ |
| $\sigma=\Rightarrow(9)$ | Return false if the number is not equal to $B_{i}$ otherwise, return the number |

to turtle $z: x y$ dir pen ink

| isnew $\Rightarrow$ (...) | creates a new turtio |
| :---: | :---: |
| $\text { sis } \Rightarrow\left\{\begin{array}{l} \checkmark ? \Rightarrow(\ldots) \\ \sigma \text { turtle } \Rightarrow(\ldots) \\ 0 . \cap \text { false } \end{array}\right.$ | Answer is 'turtle' <br> Answer is 'true' <br> Answer is 'false' |
| \$print $\Rightarrow$ (...) | Prints the current turtle state as text |
| \$go $\Rightarrow(11 . .$. | from the current position, traces $\mathfrak{B}$ distance in current direction |
| $\leqslant$ right $\Rightarrow\left(\right.$ g...) ${ }^{\text {) }}$ | changes the current direction by 8 degrees |
| $\checkmark$ gota $\Rightarrow$ (8¢...) f | from the current position, traces to $x$ y position: [ill. Returns distance. |
| \$ penup $\quad$ (...$)$ | picks the "pen". up. No ink will flow |
| $\checkmark$ pendn $\Rightarrow$ (...) | puts the "pen down. Ink will flow |
| $\leqslant$ home $\Rightarrow$ (...) | take the turtle "home"; currently $x y$ position 256256. |
| $\begin{aligned} \forall \text { ink } \Rightarrow & (\zeta \text { white } \Rightarrow(\ldots) \\ & \forall \text { black } \Rightarrow(\ldots) \end{aligned}$ | On the CSL graphics color display, ink can be any of 256 colors. |
| $\leqslant u p>(\ldots)$ | sets direction to 0 . |

Currently there is already a turtle instance at the conversational level which does not require a name, so "go 100," etc., will work directly. "Erase" will erase the turtle area only.

## to repeat

D... Evaluates D over and over.
to done

... Terminates the nearest "repeat" returning nothing
to agaln
... Starts the nearest "repeat" again.

```
to do N
    BJ... Repeats |l over and over { number of times.
        'N' contains current loop count.
        'done' and 'again' work.
to for variable start stop step exp
    & variable - D. receive a name to vary
    & start - ( }%-=>(|)1) get start number (1 if not mentioned
```



```
    number (same as start if not mentioned)
    &}\mathrm{ step - ( }\leqslant\mathrm{ by }=>(\mathcal{B})1) get step number (1 if not mentioned)
    $do.
    程 exp - D....
'do' is optional
get expression to be lterated and iterate it.
    'done' and 'again' work.
```


## to vector

isnew $\Rightarrow$ ( $\mathfrak{g} . .$.$) \quad Creates anew vector, \mathfrak{B}$ in length
$\nabla$ is $\Rightarrow\left(\begin{array}{ll}\nabla ? \Rightarrow(\ldots) & \text { Answer is 'vector' } \\ \sigma \text { vactor } \Rightarrow & (\ldots) \text { Answer is 'truc' } \\ \square: \hat{l} \text { false } & \text { Answer is 'false' }\end{array}\right.$
$\leqslant$ print $\Rightarrow(\ldots) \quad$ Prints out current contexts of the vector $\leqslant$ length $\Rightarrow$ (...) Answer is the number of elements in this vector $\sigma$ eval $\Rightarrow(\ldots) \quad$ Answer is the SMAILTALK evaluation of the contents of this vector.
$\checkmark[\Rightarrow$ dow low bound $-[$.



| to $m \times(\ldots)$ | returns the current $\times$ location of the mouse |
| :--- | :--- |
| to $m y(\ldots)$ | returns the current $y$ location of the mouse |
| to bution $n$ |  |

to in $x w y h$

to core (...)
to kbck (...)
to kbd (...)
to read (...)
to $\mathrm{cr}(. .$.
to show def貝...
to edit def


Returns true if mouse is in the box; otherwise false.
tells you how much room is left. Anything larger than 500 is good.
keyboard check. If a character has been typed and is waiting 'kbck' will be true, otherwise false.
waits until a character has been typed and then returns the character.
shows a prompt ( $n_{2}$ ), lets you type until a doit (g) and returns with a vector made up from what you typed.
prints a space
prints a carriage return
prints out the class definition in a pretty format
starts edit with title line of the definition
starts edit with body of definition
a level of the definition will be displayed (sub lists are represented by 0 ); also a menu of commands which include

| Command | 'Bugs' | Explanation |
| :---: | :---: | :---: |
| -------- |  |  |
| Add |  | Appends what you type to the end |
| Insert | - | Inserts what you type in front |
| Replace | .. | Replaces what you type between bugs |
| Delete | .. | Deletes between the two bugs |
| Move | ... | Move what is between the two bugs in front of final bug |
| Up | - | Raises a sub list one Ievel |
| Push | .. | Pushes what is between the two bugs down one level |
| Enter | . | Enters a sub list |
| Leave | . | Leaves a sublist |
| Exit |  | Exits from the editor |

```
to addto def newdef
    If E...
```

adds more message handers to a class definition addto numberib, ( $\sigma$ max $\Rightarrow$ (it $x+n$.
$x$ (SELF $\Rightarrow(\sigma$ SELF) $\Uparrow \times))$

```
to obset ... i: vec size end
    isnew \(\Rightarrow(\mathfrak{b} \ldots) \quad\) creates a new obset \(B\) long.
    \(\psi\) is \(\Rightarrow(\$ ? \Rightarrow(\ldots) \quad\) Answer is 'object'
            \(\checkmark\) obset \(\Rightarrow\) (...) Answer is 'truc'
            D. \(\mathbb{H}\) false Answer is 'false'
    print \(\Rightarrow\) (...) The contents of this obset are printed out.
    \(\sigma \leftarrow=\) (...\()\) puts 8 into the obset
    \(\checkmark\) delete \(\Rightarrow(\mathbb{B} . .\).\() removes B\) if it is there
    \(\leqslant\) map \(\Rightarrow\) ( \(g . .\). ). takes the message and runs it 'length'
    number of times. A typical way to use it for an obset 'st'
    might be, st map \(e\) (vec [i] hasmouse)
    This would cause every object in the obset 'st' to be
    asked the question hasmouse
```

An obset which exists in the system when you start up, is 'defs' which, every time you use to, is sent the name of the new class definition.
the mighty dispfiname

This class definition has been done and redone (by Diana Merry) many times in an attempt to build a very generally useful set of objects which will box text in rectangles, justify at word boundaries, find pointed at characters and words, and so on. Not every feature is prescnted here. Diana and SYSDEFS can tell you the rest.

There are two boxes: a 'window' and a 'frame'. The text (which is held in 'buf') will be automatically boxed within the frame boundaries. What you see on the screen is governed by the window boundaries: if they are equal to or larger than the frame you will see everything; otherwise, only that part of the frame which is in the window will be seen.

| reply $=$ 0 <br> 1 some <br> 2 windo <br>  11 | the window is visible and some of the frame is not on display. $x>606$ and/or $y>808$ is completely out of the window height has been automatically increased to accommodate xt in 'buf' that window bottom has been overflowed and that scrolling ppened both 11 and 12 |
| :---: | :---: |
| to dispframe input: | winx winwd winy winwd frmx frmht buf ... reply editor :... |
| Isnew $\Rightarrow$ (g月) ¢ | The first four numbers set both the window and frame boxes to the same size. The final part of the message is the string which goes into 'buf'. |
| $\checkmark-\ldots($ (1... $)$ | If $\mathcal{B}$ is a character or a string it will be automatically appended to 'buf' |
| $\checkmark$ show $\Rightarrow$ (...) | Show clears the intersection of window and frame and displays 'buf' boxed in the frame |
| * clear $\Rightarrow(. .$. | clears the intersection of window and frame and clears 'buf'. |
| \% fclear $\Rightarrow$ (...) | just clears the intersection of window and frame. Leaves buf alone. |
| $\checkmark$ scroll $\Rightarrow$ (...) | scrolls 1 time. The old first line is lost. |
| * mfinde $\Rightarrow$ ( 1 I... ) | ...mouse find character... $f$ and 1 are $x$ and $y$ |


|  | locations (usually gotten from the mouse). If these coincide with a visible character in this frame the index of that character in 'buf' will be returned. -1 means you are in the frame but after all the characters. -2 inealls you are not in the frame at all. |
| :---: | :---: |
| $\checkmark$ mfindt $\Rightarrow$ ( $B$ B...) | ...monse find token... <br> Works just like 'mfindc' except words are looked for. |
| ¢ frame $\Rightarrow$ (...) | draws a box around the frame. |
| $\checkmark$ knows $\Rightarrow$ (ev) | calls SMALLTALK from inside the frame. |

FILES AND FILING

Another area which is handled very comprehensively by this system. Class 'file' will hardly be presented here. Instead the four or five things which will cover most needs are shown. Steve Weyer and SYSDEFS can tell you more.
to filout
( $\checkmark$ pretty $\Rightarrow$ (...)) If pretty is there file looks nicer but filout takes longer.
S... a string for a file name.
( $\checkmark$ add $\Rightarrow$ (...)) If $\quad$. Id is there, definitions will be added. to end of file. Otherwise, the old stuff in the file will be clobbered.
G... If this is present, it is a vector of names of class definitions. Otherwise, all the names in defs will be read out.
to filin
(g...)

The file named by the string message will be read into SMALLTALK just as though you typed it.
to type
§...
A string for file name. Types a file (on the screen) from one which was previously filed out.
to $\operatorname{dir}(. .$.
prints out the SMALLTALK part of your file directory. dpO list will show the complete directory


[^0]:    Only those messages which are relevant to the August class for nonprogrammers have been included; see SYSDEFS for the complete story.

