
Rosetta Smalltalk:
A Conversational, Extensible Microcomputer Language

Scott K. Warren
Dennis Abbe

Rosetta
5925 Kirby, Suite 215
Houston, Texas 77005

ABSTRACT

Rosetta Smalltalk is a personal information
handling environment for low-cost microcomputers
based on the work of the Learning Research Group at
Xerox PARC. Our prototype runs on two different
Z-80 based personal computers. The major goals of
the system are to support a lively interactive style
of working and to provide an open-ended medium in
which personalized tools may easily be constructed.
Rather than write monolithic programs, the user
extends the language with new objects and syntax.
He then solves his problems by interacting with his
extensions at the keyboard. Multiple independent
CRT windows permit several partially completed
interactions to be displayed at once.

All facilities in Rosetta Smalltalk are repre-
sented by objects, which are instances of Simula-
like classes. Objects are not operated on directly,
but are sent messages requesting them to perform
actions and return replies. The language is ex-
tended by creating new classes and by adding new
messages to existing classes.

Key Words and Phrases: abstract data types,
conversational computing, extensibility, hypertext,
message sending, modularity, object oriented pro-
gramming, personal computing, windows.

CR Categories: 4.0, 4.20, 4.22, 4.34

INTRODUCTION

Rosetta Smalltalk is a conversational, exten-
sible environment for doing personal information
handling on today's low-cost microcomputers. In
many ways it represents a radical departure from
the BASIC-dominated style of computing presently in
use on these machines. The major goals of the
system are to support a lively interactive style of
working and to provide an open-ended medium in which
personalized tools may easily be constructed.

Rosetta Smalltalk is based on the very
successful work of the Learning Research Group at
Xerox's Palo Alto Research Center [4]. The original
Smalltalk was created by Alan Kay and the LRG to
serve as the communication medium for the Dynabook,
a personal computer the size of a notebook "with the
power to handle virtually all of its owner's
information-related needs". Kay's Dynabook would
be able to store thousands of pages of text, display
images with resolution surpassing newsprint, and
perform real-tlme audio synthesis with similarly
high fidelity. Although the envisioned Dynabook
does not yet exist, Smalltalk has been running on
minicomputers ("interimDynabooks") at PARC since
1972. Hundreds of visitors at PARC have learned
Smalltalk; programmers and nonprogrammers alike have
found the language both friendly and powerful.
Children, animators, musicians, secretaries, and
administrators have used Smalltalk to build their
own personalized tools with relative ease.

Rosetta Smalltalk is an attempt to provide this
kind of computing on today's low-cost microcomputers.
Our prototype implementation currently runs on two
different Z-80 based personal computers. Although
less ambitious than the Dynabook, it demonstrates
that such a system is viable on these machines.
While we acknowledge a tremendous debt to the LRG,
our language is not an implementation of either
Smalltalk-72 or Smalltalk-76 as developed at Xerox
PARC. Rosetta Smalltalk differs significantly from
published descriptions of Xerox's languages [3,5],
but since we have no detailed knowledge of those
languages we do not discuss the differences here.
In the remainder of the paper, "Smalltalk" should
be understood to mean "Rosetta Smalltalk", though
many of our statements may apply to Xerox's
languages as well.

©1979-ACM 0-89791-007-9/79/1000-0036 $00.75 see ii 36

This paper is organized as follows. In
Section 1 we give an overview of the Rosetta Small-
talk systemj Section 2 describes the use of
multiple CRT windoWs for interactive computing.
Section 3 presents a more detailed picture of the
Rosetta Smalltalk language, and Section 4 contains
a brief description of the basic building blocks
provided by the system. We conclude by discussing
the performance and limitations of our prototype.

i. SYSTEM OVERVIEW

Imagine a personal computer that could store,
retrieve, and edit almost any information that its
owner was interested in: notes, drafts of papers,
phone lists, structured files of data, pictures,
simulations, music, and so on. Suppose it could
be used as an interactive desk calculator for any
problem domain, permitting its owner to deal
directly with the items he is interested in such
as notes, timbres, and pitches in music, equations
and substitutions in mathematics, or paints, eels,
and frames in animation. How could the user, not
a computer specialist, cope with the immense variety
of data formats, language rules, and processing
conventions found among so many diverse application
packages? How could he sufficiently understand
the intricacies of all of this pre-written software
to be able to customize it to his own needs, or to
combine separate facilities to accomplish a parti-
cular task? And how could he add new facilities
of his own, withoug a large programming effort?

Our answer to these questions, inspired by the
work of the LRG, is to provide an open-ended
conversational medium in which many special-purpose
tools can be embedded, then accessed via a single
uniform notation. The goal of Rosetta Smalltalk is
to be a personalized information portfolio and
application-specific desk calculator. The system
provides the user with an APL-like workspace which
contains all his data and programs and which is
retained from session to session. Program text is
a kind of data and can be manipulated as naturally
as numbers and strings. Such an environment has
been called residentia2 [9] since everything of
interest to the user resides within the system
itself rather than being stored and edited by some
external facility. The user is given highly
interactive access to his workspace contents, with
rich visual feedback. The underlying language of
the system treats all entities in the same way, and
is easily customized with new syntax and new kinds
of objects for a particular area of interest. The
system encourages a tool-building paradigm of
problem solving. Tools are built by extending the
base language rather than by writing monolithic
programs, and are easily combined within the
existing language framework.

In the following paragraphs we discuss in more
detail the features of Rosetta Smalltalk that make
it an open-ended problem solving medium. These
features are categorized as follows: a rich
interactive style, a fully conversational language,
a single uniform notation for all operations,
syntactic and semantic extensibility, and the
modularity to permit building general tools.

Interactive. One of the major goals of Rosetta
Smalltalk is to provide a lively medium for
spontaneous problem solving. While the injunction
"Think first, program later" is good advice when
engineering a software product, it amounts to a
strait jacket for the conversational user. Working
in an interactive environment is more like sculpting
in clay than building from blueprints. It is not
uncommon to make false starts, frequently inter-
rupting one activity in order to do something else
first. In Rosetta Smalltalk multiple independent
CRT windows [i0] make these shifts of attention easy.

In many ways windows behave like pieces of paper
on a desk. We can move them around on the screen;
if two windows overlap, one will be partially hidden
behind the other, but its contents are unaffected.
When we move the window in front, the window behind
it is instantly redisplayed. Using windows we can
keep more information visible at once than if the
whole screen were dedicated to imitating a single
hard-copy device. This visual richness augments our

short-term memory, helping us do several things at
once without losing our place. Figures I to 3 show
an admittedly contrived example in which we type a
command in one window and view its output, a
histogram, in another. Our next command causes a
third window to display an error message, and we use
a fourth to edit the code in error. If the screen
is too small to display all of this at once, we can
rearrange the windows as necessary, moving an
interesting window where it can be seen or pushing
others out of the way.

Conversational. The standard way of communicating
with items in the workspace is by typing in commands
for immediate execution. Rosetta Smalltalk makes no
distinction between program text and commands from
the keyboard, and vice versa. Input may be as simple
as 2+2 or may contain multiple statements including
control structures, so there is no need to write a
program to try something out. Most work is done
incrementally by typing in commands and immediately
observing their effect, rather than by first writing
and then running a long program. Solving problems
in this way is faster and more natural than in the
conventional "edit-run-debug" programming cycler
because each command we type performs some part of
our actual task and gives us immediate feedback,
The fully conversational aspect of Smalltalk
simplfies testing new code and allows Smalltalk to
be used as its own debugging language.

One language level. The Smalltalk language is based
on the single notion of objects communicating by
sending and responding to messages. Every entity in
Smalltalk is represented as an object, from numbers
and strings to control structures and arbitrary
facilities defined by the user. The only operation
in Smalltalk is to send an object a message
requesting it to perform some action and possibly
send back a reply. Objects are grouped into c2asses
which describe their representation, the messages
they can receive, and the methods they use to respond.

These ideas are detailed in Section 3; it
suffices for now to note that the same notation for
sending messages to objects can add two numbers, turn
on a peripheral, rename a file, or invoke an

37

application package. Rosetta Smalltalk thus serves
as a command language, a programming language, a
debugging language, and host to any number of
special purpose applications. This uniformity
greatly simplifies the user's view of the system,
and reduces the system's size by eliminating the
need for several distinct language processors. The
user also has an unusual amount of power available
at the "command" and "application control" levels,
since Smalltalk variables and control structures
may be used there as well as in programs.

Extensible. The Rosetta Smalltalk user can easily
customize his system by defining new classes of
objects or adding new messages to existing classes.
The necessary programming is done conversationally,
testing each definition as it is entered. The user
then solves his problems at the keyboard by directly
executing Smalltalk commands. His extensions
customize the language so that variables can hold
things like musical scores, payroll records, or
circuit diagrams, and his commands do real work
like playing music, calculating payroll deductions,
or simulating waveforms. In this way Smalltalk
becomes a high-level programmable desk calculator
tailored to his particular application.

Extensibility permits new facilities to be
used as if they were built in. The user interacts
with new kinds of objects through the same notation
for sending messages with which he is already
familiar. When the user adds an extension to his
workspace, such as a set of objects for composing
and playing music, he gets more than he would from
a monolithic program performing the same functions.
He has not just a music program but a music language.
As an extension of Smalltalk, this language contains
powerful features for programming as well as for
performing music.

Modularity and building ~eneral tools. Rosetta
Smalltalk encourages the construction of open-ended
tools rather than fixed solutions to a problem.
The notion of objects sending messages provides a
uniform way of accessing extensions to the system,
and the class mechanism permits extensions to be
self-contained and thus suitable for loading into
any workspace. As a result separately written
tools may be combined with relative ease. For
example, the music extension mentioned above could
be combined with an extension for statistical
analysis to permit the interactive search for pat-
terns in a set of scores. A third extension for
drawing histograms could be added so that such
patterns could be viewed graphically. There is
no need to venture outside of Smalltalk into the
realm of operating systems to make the connection
between applications. Smalltalk thus supports the
same "software tools" approach to software develop-
ment practiced on the UNIXt system [6], but without
the distinction between conmnand language and pro-
gramming language. We see this toolkit approach to
problem solving as programming in a very high level
language specialized for the task at hand [7].

Figure 1. Multiple independent CRT windows.

t UNIX is a trademark of Bell Laboratories. Figure 2. A diagnostic window.

38

Figure 3. An editing window.

2. INTERACTING THROUGH WINDOWS

We have already seen that many windows may be
displayed at once, much like sheets of paper on a
desk. Each window may represent a different
activity or view into the workspace. We turn our
attention from one activity to another by pointing
at the window of interest with the cursor; the
window we select can then receive our keyboard
input. For example, while editing a document in
one window we might use a second window to consult
a reference. Different styles of interaction may
also be associated with different windows. One
window might be used for dialog with Smalltalk,
another may represent a menu of key-selectable
commands, and another may simply display some text.
Three styles of window interaction are part of the
basic Rosetta Smalltalk system: dialog windows,
diagnostic windows, and editing windows. Other
kinds of windows may be defined using the basic
Win~ class discussed in Section 4.

Dialog windows. A dialog window is used for
typing Smalltalk code for immediate evaluation.
The user's keystrokes and the result of each
evaluation are printed in the window. A dialog
window is thus the standard way of interacting
with objects in the workspace, providing the
"desk calculator" mode of operation common to
most conversational systems. The bottom window
in Figure i is a dialog window.

Each time a dialog window is ready for input
it invokes the system scanner named read. read
prompts with a "?" followed by a cursor. Input is
gathered up until a special key called DOlT is
pressed; this key is chosen as convenient for each
keyboard, but always echoes as "~". Before he
presses DOlT the user can edit his input by pressing
keys to delete the previous character, the entire
current llne, or all of the input typed so far.

When DOIT is finally pressed the input is evaluated
and the result printed. By convention all objects
print themselves in the window named disp. Each
dialog window evaluates its inputs in a context in
which disp may be temporarily re-bound to another
window to send output elsewhere.

It is often convenient to use more than one
dialog window. A running program, for example, may
prompt the user for input. He can then open a new
dialog window, perform some calculations, and finally
reply to the waiting program with his calculated
value.

Diagnostic windows. When an error is detected during
Smalltalk evaluation, a diagnostic window will appear
with a brief statement of the complaint. In this
window the user can examine the context of the error.
The message receiver, the message it received, and
the Smalltalk code it was running can be displayed
upon request. The user can engage in Smalltalk
dialog in the context of the error, for instance to
print or modify variables in the local name scope.
The full power of Smalltalk is available as a
debugging tool, making a special debugging language
unnecessary. It is also possible to move up and
down in the chain of contexts that led to the error,
inspecting each one in turn. After examining and
perhaps modifying the context of the error, the user
can either terminate the suspended execution or
resume it in a context prior to the one in which the
error occurred. In the latter case he may supply a
value to be used as the result of the suspended
context. When he is done the diagnostic window
disappears; any windows it obstructed become visible
again. A diagnostic window appears in the top left
corner of Figure 2.

Like most other Smalltalk system facilities,
the error machinery is easily accessible to the user.
By evaluating something like

error "This i8 my complaint"

any Smalltalk program can open up a diagnostic
window.

Editing windows. Smalltalk programs are typically
edited with a hypertext [2] editor which uses windows
for displaying, entering, and pointing to program
text. Figure 3 shows the screen layout after this
editor has been invoked. The window at the top
describes what is being edited. The largest rec-
tangle is the text window, in which the current
portion of program text is shown. The window at the
right is a menu of available editing commands.
Selections from this menu are made by pressing single
keys corresponding to the first character of a
command name. Selecting the "..." command brings a
new menu of additional commands into the window.
The bottom window is used to enter lengthy pieces
of text such as insertions. The implementation of
the editor is simplfied by the fact that each of
these windows may be scrolled, cleared, and so on,
independently of the rest.

The editor knows about the structure of
Smalltalk programs and uses this knowledge to format
the displayed code attractively and to allow easy
selection of substructures for examination. The
Smalltalk code is always shown neatly indented, with
each statement starting on a new line. Whenever the
text is altered it is immediately reformatted. Only

39

the top level of the code is displayed in the text
window; parenthesized subexpressions are simply
shown as "{}". The in command descends into one of
these subexpressions to see its top level. The code
in the window may be altered by selecting other
commands from the menu, with the current version of
the text always visible. The out command returns to
the surrounding level.

To illustrate the use of the editor, suppose
we want to insert some new text into the current
program level. First we position the editor's
cursor to where we want the text to go by using some
combination of the left, right, up, down, begin, and
end commands. Next we press a for add. Inmnediately
the menu goes blank to indicate that no selection
frQm it can be made until our insertion is complete.
Simultaneously the prompt "add?" appears in the
bottom window, followed by a typing cursor. We are
now talking to the same read object used by dialog
windows. After typing in the new text, we press
DOIT and the text window immediately shows the
result. At the same time, the bottom window clears
and the menu reappears.

3. THE ROSETTA SMALLTALK LANGUAGE

The Smalltalk language is based on a metaphor
of intelligent objects which communicate by sending
and responding to messages. An object cannot be
operated on directly, but can only be sent requests
to perform actions and return replies. Every object
is a member of some class which describes its repre-
sentation, the messages it can receive, and the
methods it uses to answer them. Smalltalk is easily
extended with new classes of objects and new syntax
for messages.

Message sending. A message is sent by writing the
message receiver followed by the message itself.
For example, to move the window diep to a different
place on the screen we can say

disp move to 10 2

In this expression disp is the message receiver and
"move to 70 2" is the message being sent. We repre-
sent the syntax of this message by the message
pattern

... move to (newl) (newa)

The "..." indicates the message receiver, and the
parenthesized variables indicate evaluated parameter
slots. An object may also receive message parameters

unevaluated. For instance, the control structure
object do responds to a message of the form

... (n) (@code)

The symbol "@" indicates that code is received by do
unevaluated. When we send

do 3*4 (disp hide show)

n is 12 and code is the list (disp hide show), do
answers this message by evaluating code 12 times,
causing disp to repeatedly disappear and reappear.

The object x is returned as the reply to a
message by evaluating

reply x

When a message is sent to an object just to achieve
an effect and not to compute a result, reply may be

omitted. In this case the message receiver itself
is replied by default. This reply permits several
messages to the same object to be cascaded together,
as ...hide and ...show were in the example above.
Rosetta Smalltalk uses periods to separate message
sendings when it is not intended for the reply of
one message to become the receiver of the next.
Thus the expression

do 3*4 (disp hide. disp show)

has the same effect as the example above.

Smalltalk evaluates an expression by first
obtaining the message receiver, then matching
message patterns against the following tokens. Only
those patterns belonging to the receiver's class are
eligible to be matched. Matching proceeds from left
to right, interleaved with evaluation of subex-
pressions corresponding to parameter slots.
Smalltalk matches a specific token in preference to
a parameter slot, and always takes the longest
possible match. The empty message will be matched
if the receiver can answer it and no longer pattern
is found. Once a unique pattern is matched Smalltalk
sends the message, setting up a new context for the
object to respond in.

Context of a message sending. Every Smalltalk object
owns some private data that can be directly accessed
only by itself. These instance variables are
property names cormnon to all instances of a class,
for which each instance has particular values. For
example, a window object's size is described by two
variables: h, its height in lines, and w, its width
in columns. Each window has its own values for
these variables and refers to them whenever it is
asked to show on the screen. We cannot change these
values directly, but a window will do so if asked:

disp grow to 10 30

Sending this message has the visible effect of
setting disp's size to i0 lines of 30 colunms each.
To accomplish this, disp has to hide itself, adjust
its text buffer to 300 characters, update its h and
w values, and show itself again. Because unauth-
orized access to instance variables is prohibited,
the window is able to ensure that its buffer size
and visible appearance remain consistent with its
height and width.

Objects answer their messages by running pieces
of Smalltalk code called methods. A method refers
directly to the object's private data by mentioning
its instance variable names. The method can also
mention the special name self to refer to the object
receiving the message. Objects often send themselves
messages this way. For instance, the method by
which windows respond to the "grow to" message could
be

... grow to (newh) (neww) =>
(self h~de.

@text + String new newh*neww.
@h ÷ newh. @w ÷ neww.
se If show)

An object may reveal as much or as little of
its representation as it desires by the messages it
chooses to answer. It can grant full access to its
representation by answering

... 's (@code) => (reply code eval)

40

When this message is sent, code is an unevaluated
piece of Smalltalk code, and the object replies
with the result of evaluating that code in its
private context. If this message is defined for
windows, sending

disp's h

will reply with the height of disp. This kind of
message is helpful when debugging, but must be used
with care since the object's assumptions about its
own data can be disrupted. For instance,

disp's (@h ÷ h+2)

increases disp's height without making a corre-
sponding adjustment in its text buffer, and will
cause an error the next time disp is asked to show.

There are actually three sets of variables in
the local context of a message sending: temporary
variables, instance variables, and class variables.
All three kinds may be accessed directly by a
method. Temporary variables are created when a
message is sent and disappear as soon as a reply is
made. These variables may be used as scratchpad
storage while the method is running. Certain
temporaries are initialized with values from the
message and thus serve as formal parameters; the

variables newh and new in the "grow to" message
are examples of this. Instance variables are names
for the data private to each instance of a class,
as discussed above. Their values persist between
message sendings as long as the object exists.
Class variables are accessible to all instances of
a class. They usually hold data for communication
between instances or for class-wide bookkeeping.
Their values are stored within the class itself
and persist as long as the class exists. Class
variables play the role often filled by global
variables in other languages, but in a more secure
and modular way. The shared information held in
class variables is accessible only to members of
the class and not to the world at large.

When a name is mentioned that is not one of
the three kinds of locals, Smalltalk looks for it
in the dynamically enclosing context -- that is,
the one from which the current message was sent.
The search ends in the user's workspace. A common
problem with dynamic name scoping is the accidental
hiding of global variables when code is run inside
a context that happens to use those names for
another purpose. Rosetta Smalltalk does not suffer
from this problem because all class-related data is
accessible from the innermost context, including
the class variables that would have been global in
some other languages.

Classes. We group objects into classes so they
can share the same representation, message patterns,
and methods. The Smalltalk class mechanism is
modelled after that of Simula 67 [i], but Smalltalk
is unique in representing every facility as an
instance of some class. A new class is a
description of a kind of object, or data type, of
which there may be many instances. A new class is
thus a semantic extension to the Smalltalk world.
Furthermore, the message patterns of a new class
form a direct extension to the language syntax. By
creating new classes the Smalltalk user creates
objects modelling his own abstract ideas, and
invents his own notation for using them as well.

Classes are a tool for extending a language
in a modular way. The representation of an object
is ordinarily concealed from outside the object,
providing information hiding in the sense of
Parnas [8]. The only operation that can be performed
on an object is to send it a message requesting
some action; how that action is carried out is of
no concern to the sender and may be changed without
affecting existing code. Moreover, this object-
oriented style of programming collects related code
into a central place, the class definition. For
instance, details of how a class of objects should
be printed are grouped with other details about the
class rather than in some all-purpose print routine.
This makes it easier to find all affected code when
a change is made.

A new object is created by sending a ...new
message to the desired class. The object should
respond to a message beginning with the special
token isnew by initializing its instance variables
appropriately. One cannot forget to initialize an
object because the isnew token is automatically
supplied by the system. Apart from this bit of
synchronization, isnew messages are no different
from other messages. For example, a new window
must be told its initial size and location. To
create a new window and name it mywindow, we say

@mywindow ÷ Window new 5 30 2 2

This creates a new window which immediately receives
the message "isnew 5 30 2 2". The new window
initializes its height and width to 5 lines of 30
columns and its screen location to line 2, column 2.
Other instance variables are computed from the
given information. For instance, mywindow's text
buffer is allocated to hold 150 characters.

Every object in Rosetta Smalltalk belongs to a
class, and classes are no exception. Every class
is an instance of the class named Class; this class
has the unique property of being an instance of
itself. To create a new class we send the ...new
message to Class:

@Staak ÷ Class new

Of course, the new class must be given variable
dictionaries, message patterns, and methods for it
to be useful. This could be done by sending ap-
propriate messages to Stack, though we would
ordinarily invoke the built in hypertext editor.

One can also extend or modify the definitions
of existing classes. This includes predefined
classes of the Rosetta Smalltalk system as well as
those created by the user. As a simple example,
suppose we want windows to be able to flash them-
selves in order to attract our attention. We must
define two things: the syntax of the message and
the method used to answer it. Our new message
syntax will be

... flash (n) times

The method for flashing will be to erase and redraw
the window's frame the requested number of times.
We can add this capability to class Win~w by
evaluating

Window answer @(flash (n) times)
by @(do n (self unframe frame))

This is just a message to Window. The "@" tokens

41

indicate that the following parenthesized lists
should be taken literally rather than evaluated.
After adding the above message to class Window we
can say

mywindow flash 20 times

and our window will blink its frame off and on 20
times. Note that when a new message is added to a
class, all existing instances can immediately
respond.

4. THE PREDEFINED OBJECTS

The message sending discipline of the previous
section is only a language framework. This skeleton
must be augmented with enough predefined objects to
enable the construction of extensions. The basic
Rosetta Smalltalk system provides fundamental
progranmning language elements and some high-level
building blocks to support interactive computing.
This set of basic objects includes the primitive
classes Atom, Number, String, and List; the objects
yes and no; the control structure objects if, do,
for, repeat, and done; the objects Window, read,
kb, File, and lp for input and output; the work-
space management objects Vars and erase; and of
course the class Class. In addition there is a
hypertext editor for creating and modifying classes
and other program text. Our summary of the basic
systemis rather informal; many of the predefined
messages answered by these objects are omitted.

There are several messages which every object
should be able to answer. Rosetta Smalltalk
supplies default methods for answering these
messages to every new class. These are:

... print => print the title of the
obJect's class in brackets

... i8 ? => reply the object's class

... is (c) => reply yes if the object is
an instance of class c;
otherwise reply no

Usually the default print method gets replaced by
something more useful.

The Primitive Classes.

Under this heading we include the classes
Atom, Number, String, and List. We use these
objects for variables, arithmetic, and data storage.
These classes use familiar notation for concepts
found in other languages, such as arithmetic and
assignment.

Atom. Atoms are LISP-like symbols used as variable
names and syntactic tokens in messages. When an
atom receives a message of the form ... ÷ (ob) it
will bind itself to the object ob in the current
context. Binding occurs under the rules of dynamic
name scoping discussed earlier. The message ...eual
sent to an atom replies with the object to which it
is bound.

The atom spelled "@" is always bound to an
object called quote, which receives a single un-
evaluated parameter and replies with that parameter.
An object may thus be referred to literally in a
message by preceeding it with @. For example, the

result of evaluating @x is just the atom x. An
"assignment statement" in Smalltalk hence looks
like @x ÷ 3. After this assignment the atom x
is bound to the number 3.

Atoms also answer messages to print themselves,
obtain their print names, and inquire whether one
atom is the same as another.

NwnOer. Numbers in our prototype implementation
are provided only in the form of small integers.
These numbers respond to the usual complement of
arithmetic and relational messages. Examples of
other messages are

97 chars replies the string "97"

97 ascii replies the string "a"

97 print performs disp ÷ 97 chars

String. Strings are sequences of characters that
respond to a rich set of string manipulation
messages. For instance, if 81 and 82 are strings,
then

sl length

sl + s2

87[k]

s1[j to k]

replies the number of
characters in 81;

replies the concatenation
of sl and s2;

replies the k-th character;

replies the substring of sl
from positions j to k;

81 find first s2 replies the position of the
leftmost occurrence of s2
in sl

and so on. Strings may also be used as byte arrays
which may be selectively updated. For example

81[k] ÷ "a" replaces the k-th character;

81[j to k] + s2 replaces a substring of sl.

List. Lists are arrays much like strings except
that each position of a list can contain any object.
Most of the string messages are also answered by
lists; one may concatenate two lists, pick out an
element or subsequence of elements, or replace
elements of a list. Lists also have a method for
iterating over their elements. The expression

1 each x do (x print)

will print each element of the list 1. Smalltalk
also uses lists to represent programs. A list will
respond to the message ...eval by running itself as
Smalltalk code. The Smalltalk interpreter is thus
Just another method of the class List.

Control Structure Objects.

Control structures in Smalltalk are imple-
mented by objects which answer messages containing
unevaluated code as parameters. Users can easily
define new control structures of their own. We
have already seen an example of how do works.
Other control structure objects are briefly dis-
cussed below.

if. The object if implements the McCarthy condi-
tional, as found in LISP. The syntax of if's
message is

... (expr) => (@yespart)

42

The expression expr should evaluate to either yes or
no. If expr is yes, the yespart code is evaluated
and the entire list in which the if occurs is exited.
For examples

(if i < j => (i print), j print)

will print the smaller of i and j. If the value of
expr is no, if does nothing and replies immediately
with itself. This permits a series of else-if
tests to be cascaded together, as in

if x < node val => (left)
x > node val => (right)
x = node val => (found)

for. The object for implements a for-loop control
structure. It answers a message of the form

... (@var) ÷ (lb) to (ub) do (@code)

For example, the expression

for k ÷ I to n do (k print, cr)

will print the first n integers on separate lines.

repeat. The object repeat implements an infinite-
loop control structure. Control leaves the loop
when either the user interrupts, or the object done
is invoked. For instance,

repeat (read eval print, cr)

is a typical Smalltalk dialog loop.

done. The object done performs single level exits
from for, do, and repeat loops, and from the list
iteration method for the "...each" message. A use
of done may optionally exit a loop with a reply,
which becomes the reply of the loop itself. Thus
the loop

repeat (if i < j => (@i + i + I).
done with "ok")

will reply with the string "ok" when i becomes
greater than or equal to j.

Input and Output Objects.

Smalltalk input is done primarily with the
objects kb and read. kb will wait for a single key-
stroke and reply with the ASCII code of the key
depressed. The object read is used to input
Smalltalk tokens or untokenized lines of characters.
A token is any instance of one of the classes Atom,
Number, String, or List. read can thus read
anything from a single number to an entire Smalltalk
program. By default, read reads from the keyboard
and echoes in the window named disp; its reply is a
list of the tokens read. The following messages to
read are also defined:

read in w

read of ob

read line

read line in w

echoes input in window w;

ob can be a string or any
object that replies to the
message ...next with a
character; result is as if
the characters were typed
at the keyboard but no
echoing occurs;

replies a string of the
characters typed, which
are echoed in disp;

like read line but echoes
in window w.

Window. Windows display themselves as rectangular
areas on the screen, optionally bordered by a frame.
Each window has its own size, screen location, text
buffer, cursor, and status bits. Each window may be
written into, scrolled, cleared, moved, changed in
size, and so on independently of the rest of the
screen. Examples of some messages to windows
include:

w ÷ "some text"

w clear

w unframe

war21

w hide

W show

w grow to 10 30

w move to 15 1

w scroll

writes the text in w at the
current position of its
write cursor;

fills the text buffer with
blanks;

erases w's frame;

sets w's cursor to its line 2
and column I;

erases w from the screen;
previously obstructed parts
of other windows are
brought into view;

displays W on the screen;

gives w i0 lines of 30 char-
acters each;

moves w to line 15, column 1
of the screen;

scrolls the text in w up by
one line.

File. The class File provides sequential and random
access to secondary storage. The contents of a file
are a sequence of bytes. Examples of file messages
include:

f o~en '~" outvut

f ÷ 'Rome text"

f seek n

f next

f end

f close

opens f for output with
filename '~";

writes the text to f;

sets f's position to its
n-th byte;

reads the next byte from a
file open for input;

replies yes if at end of file;

closes the file.

43

/~ The object lp is used to write to a hardcopy
device, lp answers some of the same messages as do
windows; in particular, lp ÷ r~rint it" prints the
text 'print it" on the line printer.

Workspace manaxement.

As mentioned earlier, all atom bindings not
local to a particular message sending context are
made in the user's workspace. A list containing all
the atoms so bound can be obtained from the object
named Vars. The object erase will remove variables
from the workspace, e.g. erase (x y z).

The Class Class.

New classes are created by sending the message
...new to the class named Class. The messages and
methods of a class may be changed by using the
messages

... answer (message) by (method)

... forget (message)

The method for a particular message may be obtained
by sending

... method for (message)

The ...messages message to a class will reply with
a list of all its message patterns. Messages for
changing the other parts of a class also exist. A
class can be edited using the hypertext editor by
sending it the message ...edit.

CONCLUSION

A prototype implementation of Rosetta Smalltalk
currently runs on two different Z80 based personal
computers. Our prototype was intended as a
feasibility demonstration and design tool rather
than a finished product; its implementation was
deliberately kept simple even where it was clear
that special-case optimizations would be needed for
adequate performance. Despite this the system's
performance is encouraging. The basic system
described in this paper occupies about 16K bytes,
consisting of 12K of machine code and 4K of pre-
defined objects. This does not include the work-
space. No thorough benchmarking has been done, but
an in-memory bubble sort runs seven times slower
than the same algorithm in interpreted BASIC on the
same machine. We believe we have learned enough
from our prototype to design a new version of the
system with performance comparable to BASIC.

Our experience in using Rosetta Smalltalk,
though limited, has also been encouraging. We have
created a number of toy extensions ranging from
menu-driven drawing tools to a simple discrete-
event simulation system. In addition, we built
several versions of the hypertext editor in Small-
talk before manually translating it into assembly
language. Only a few persons besides ourselves have
used the system, but they have reacted enthusiastic-
ally. We are aware of a number of limitations in
our present system; some are the result of deliberate
design tradeoffs, some are due to the simple imple-
mentation of the prototype, and some are imposed by
our target machines. These limitations include:

No declarations: this is a simplification for the
novice and is traditional in highly interactive
languages, but the drawbacks are lost security
and the necessity for interpretation; we plan
to add an incremental declaration facility in
a later version.

Dynamic parsing: in the absence of declarations~
message pattern recognition must be interleaved
with evaluation; message patterns allow a
friendly, readable syntax and easy syntactic
extensibility, but can be confusing if deeply
nested or if one is not familiar with the
classes of intended message receivers; also,
code may be parsed in an unexpected way if the
class of a message receiver is not what was
expected.

No subclass capability: the use of subclasses makes
the effort involved in defining a new class
less, but it is difficult to provide in our
prototype's implementation of parsing.

No coroutines: as with subclasses, this desirable
feature was sacrificed in favor of simplicity
in the prototype.

Low bandwidth: of course our target machines do not
have the high-resolution graphics or the
computational resources of PARC's interim
Dynabooks; still, our system is qualitatively
similar to PARC's.

No applications software: the most serious
limitation of our present system is the lack
of the application extensions that would make
Rosetta Smalltalk a full-fledged personal
information handling system.

We have described Rosetta Smalltalk as a system
offering a rich interactive style, a fully conver-
sational language, a single uniform notation for
all operations, syntactic and semantic extensibility,
and the modularity to permit building general tools.
But perhaps its most important characteristic for
personal computing is its friendliness. The notion
of communicating with intelligent objects has an
anthropomorphic flavor which puts abstract data
types in a lively, concrete setting. The idea of
classes is based on the familiar idea of grouping
together objects which share common properties.
The Rosetta Smalltalk syntax has a pleasant, readable
appearance because syntactic extensibility allows a
suggestive notation to be chosen for every operation.
Our experience and that of Xerox's Learning Research
Group show that programmers and nonprogrammers alike
readily accept the metaphor of active objects
communicating by sending messages, and can
effectively use the powerful tools for abstraction
and extensibility that Smalltalk provides.

44

REFERENCES

i. Birtwistle, G., Dahl, O.-J., Myhrhaug, B.,
Nygaard, K. Simula Begin. Auerbach, Philadel-
phia, Pa., 1973.

2. Carmody, S., Gross, W., Nelson, T.H., Rice, D.,
Van Dam, A. A hypertext editing system for the
S/360. Faiman, M. and J. Nievergelt (eds.),
Pertinent Concepts in Computer Graphics.
University of Illinois, 1969, 291-330.

3. Goldberg, A. and Kay, A. (eds.). Smalltalk-72
Instruction Manual. SSL76-6, Xerox PARC, Palo
Alto, Ca., 1976.

4. Goldberg, A. and Kay, A. Personal dynamic media.
IEEE Computer I0, 3 (March 1977), 31-41.

5. Ingalls, D.H.H. The Smalltalk-76 programming
system design and implementation. Proc. Fifth
Annual Symp. on Principles of Programming
Languages (ACM) (Jan. 1977), 9-15.

6. Kernighan, B.W. and Mashey, J.R. The UNIX
programming environment. Software - Practice
and Experience 9, 1 (Jan. 1979), 1-15.

7. Liskov, B. and Zilles, S. Programming with
abstract data types. Proc. Symp. on Very High
Level Languages, SIGPLAN Notices (ACM) 9, 4
(April 1974), 50-59.

8. Parnas, D. On the criteria to be used in
decomposing systems into modules. Comm. ACM 15,
12 (Dec. 1972), 1053-1058.

9. Sandewall, E. Programming in an interactive
environment: the "LISP" experience. Computing
Surveys i0, 1 (March 1978), 35-71.

i0. Teitelman, W. A display oriented programmer's
assistant. 5th International Joint Conference
on Artificial Intelligence (1977), 905-915.

45

