
' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 1

Intro to Garbage Collection in Smalltalk

* By John M McIntosh

- Corporate Smalltalk Consulting Ltd.

- johnmci@smalltalkconsulting.com

* What is this GC stuff:
- Why does it run.

- What does it do.

- Why do I care.

- How do I tune it?

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 2

Garbage Collection - a worldly view

* On comp.lang.smalltalk in the last year:

- foo makeEmpty, makes a collection empty, easier on
the Garbage Collector!

- It’s wasting time collecting garbage, couldn’t it do it
concurrently?

- Garbage Collector thrashing will get you. . .

- I don’t like Garbage Collectors (call me a luddite), but a
real C programmer understands the complexity of his
allocation/disposal memory logic.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 3

But Garbage is?

* Stuff/Objects you can’t get to via the roots of the World.

* If you can’t get to it, how do you know it’s Garbage?

* Well because you can’t get to it you *know* it’s Garbage!

* The VM knows what is Garbage, trust it.

* Yes, objects become sticky, or objects seem to disappear
but these aren’t GC faults, just a lack of understanding on
your part.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 4

GC Theory and Implementation

* If that object is going to be garbage collected:

- When does it get GC?

- How does it get GC ?

- More importantly, how do we tune the garbage
collector for best performance and least impact on our
application? GC work *is* overhead after all.

* First we will discuss theory.

* Then we will explore implementations of theory in
VisualWorks, VisualAge, and Squeak.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 5

Evil Sticky Objects

* But I’ve got this object that doesn’t get garbage collected!

- UnGC objects are your problem, not the VM’s!

* Discovering why an object isn’t garbage collected is an art
form, we could talk for a day on how to do that.

* But remember, multiple garbage collectors in most
Smalltalks might mean a full global garbage collection is
required to really GC an object. Sometimes that object *is*
garbage it’s just not garbage yet. (IE Foo allInstances)

* Using become: to zap a sticky object is a bad thing.
- It doesn’t fix the root of the problem

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 6

Automatic Garbage Collection works

* The theories dates back to the 60s. Implementations we see
today are decades old. I’m sure much of the actual code is
decades old too.

* UnGCed objects are held by you, or the application
framework, you will find the holder some day.

* If you can find a garbage collector bug, I’m sure you could
become famous!
- March 2001, Squeak GC issue found, VM failure on class reshape

- F all 2000, Squeak finalization bug!

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 7

GC Overhead

* Critical issue for people fearing the GC.

* Pick a number between 2 and 40%.

* A conservative guess is 10% for good implementations of
good algorithms.

* Some vendors will claim 3% (Perhaps).

* The trick is to hide the overhead where you won’t notice it.

* Less mature implementations use slow algorithms or aren’t
tuned. Which fits most new language implementations
since the GC is a boring part of any VM support/coding.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 8

GC Algorithms (Smalltalk Past and Present)

* Reference counting

* Mark/Sweep

* Copying

* Generational

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 9

Reference Counting

* Algorithms
- Collins

- Weizenbaum

- Deutsch-Bobrow

* Original Smalltalk blue book choice.
- currently used by Perl and other popular scripting languages.

* Easy to implement and debug.

* Cost is spread throughout computation, the GC engine is
mostly hidden.

* Simple, just count references to the object..

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 10

Reference Counting

* Each object has a reference counter to track references.

* As references to an object are made/deleted, this counter is
incremented/decremented.

* When a reference count goes to *zero*, the object is
deleted and any referenced children counters get
decremented.

2

Root 1

1

1
0

deleted

1

cascade delete
to children

A

B

C

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 11

Reference Counting

* Impact on user is low, versus higher for copy algorithms.
- Since reference counting has little impact on an interactive environment

all early Smalltalk systems used it, since implementations using other
algorithms had very noticeable side effects.

- Paging cost is low. Studies showed that associated objects clump in
groups, so it was very likely that objects referenced by the deleted object
were on same memory page, avoiding a page-in event.

- (Neither of these strengths/issues apply today).

* Oh, and Finalization (hang on) happens right away!

* Seems simple, but there are issues....

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 12

Reference Counting - Issues

* A bug can lead to disaster. Memory leaks away.
- An object could get de-referenced, but not GCed, a bad thing.

- In early Smalltalk systems, a small extension to the VM called the
Tracer was used to clone Smalltalk Images. It also fixed reference
count problems for the developers. Many bits in your image today
were born in the 70’s and fixed by the Tracer. (See Squeak)

* Do we need counter for each object, or just a bit?

* Cost! Deleting an object and it’s children can be expensive!

0

1

cascade delete
to children

Many children mean
lots of time (Trees)

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 13

Reference Counting - Issues

* Overhead is a big factor. Early Smalltalk systems showed
reference counting cost upwards of 40% of run time if not
implemented in hardware. (special CPU, not generic)

* Cyclic data structures and counter overflows are issues.
- Solved by using another GC algorithm (Mark/Sweep), which will

run on demand to fix these problems.

2
Root

1

2

1

Cycles in reference links
aren’t handled correctly.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 14

Mark/Sweep

* Algorithms
- McCarthy

- Schorr-Waite

- Boehm-Demers-Weiser

- Deutsch-Schorr-Waite

* Start at the roots of the world, and examine each object.

* For each object, mark it, and trace its children.

* When done, sweep memory looking for unmarked objects,
these objects are free.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 15

Mark/SweepRoots

M
M

M

M

¥ Mark accessible objects.
¥ Sweep all objects, and now we realize,
¥ unmarked objects A, B, and C are free

M

A

B

C

D

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 16

Mark/Sweep

* No cost on pointer references.
- Your application runs faster, since you defer the GC work until

later, then you pay.

* Storage costs -> it might be free.
- All we need is a wee bit in the object header...

- Can be implemented as concurrent or incremental.

- Many implementations of Java use a mark/sweep collector,
running on a concurrent low priority thread. Pauses in the GUI
allow the GC to run. VW uses the same solution (non-concurrent).

* Trick is to decide when to invoke a GC cycle.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 17

Mark/Sweep - Issues
* Sweep touches each object and thrashes pageable memory.

- Good algorithms that use mark bitmaps can reduce problem by not
directly touching object which is easier on VM subsystem.

* Mostly ignored today (I think)

* Sweep needs to check each object, perhaps Millions!
- There are ways to tie sweeps to allocation, anyone do this?

* Recursive operation which could run out of memory.
- This can be recovered from. (Slow, saw impact in Squeak, 2000).

* Cost is as good as copying algorithms.
- Copy algorithms are better if you have lots of allocations and

short- lived objects.

* Can be concurrent But means complexity!

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 18

Allocating swiss cheese

* Freed objects leave holes in memory!

* Both mark/sweep and reference counting schemes share this problem.

Free

Memory

Used

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 19

Swiss Cheese - Allocation?

FREE

* Which hole should a new object be allocated from?
* How to allocate an object is a serious question, many theories exist.
* Which the Virtual machine uses is a real factor

??

New object goes where?

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 20

100,000 Logarithmic scale

Object
Table
Header
Entries

Object Table Data Entries

1st Unit of Work

2nd
Unit of
Work

Time Taken, (work units have same computation effort)

10,000

1,000

<- Setup of problem ->

First unit of work takes 10x longer than 2nd unit of work. Why?

Explain the following VW problem, propose a solution

100

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 21

Swiss Cheese - Free Space?

* Sum of total free space is large, but fragmentation means
you can’t allocate large objects, or allocation takes a
long time. Like being surrounded by sea water, but none
of it is drinkable!. . .

* Solution: Compaction is required!

- Means moving memory and updating references.

- This is Expensive!

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 22

Mark/Sweep Compaction

* Algorithms
- Two-Finger
- Lisp-2
- Table Based
- Treaded
- Jonkers

* Basically on Sweep phase clump all objects together, slide
objects together, and the holes float up!

* However it touches all memory, moves all objects in the
worst possible cases. Expensive, but can be avoided until
required!

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 23

Mark/Sweep Compaction
* Triggered if: (All decision points in VisualWorks)

- Fragmentation has gotten too large. (VW) (some counters not all)
- Largest free block is below some threshold. (Squeak, VW�)
- A large object cannot be allocated. (Squeak,VW)

* Object Tables (Good or bad?) (VisualWorks?)
- This makes address changes easy. Remember, a reference isn’t a

memory address. It is a descriptor to an object. The VM must at
some point map references to virtual memory addresses, and this is
usually done via a lookup table known as the Object Table. An
reference change mean a cheap table entry update.

* In general, compaction events are expensive.
- Early Smalltalk systems expressed them in minutes.

The same can apply today!

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 24

Copying

* Algorithms
- Cheney

- Fenichel-Yochelson

* Two areas called semi-spaces are used. One is live and
called the FromSpace. The other is empty and called the
ToSpace, mmm actually the names aren’t important.

* Allocate new objects in FromSpace, when FromSpace is
full then copy survivor objects to the empty semi-space
ToSpace.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 25

Copying - The Flip or Scavenge

* When FromSpace is full we Flip to ToSpace:
- Copy roots of the world to ToSpace.
- Copy root accessible objects to ToSpace.
- Copy objects accessible from root accessible objects to ToSpace.
- Repeat above til done.

* Cost is related to number of accessible objects in FromSpace.

Root Root

A

B

C

D

A D B

C

FromSpace ToSpace

Flip

Notice change of Placement
and E isn’t copied.

E

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 26

Copying - Nice Things

* Allocation is very cheap. Objects grow to the bottom of
semi-space, so we have a short allocation path. A flip
ensures memory is compacted, no fragmentation occurs.

* VM hardware can indicate boundaries of semi-spaces.

* Touches only live objects (garbage is never touched)

* Object locality?
- Sophisticated algorithms can copy objects

based on relationships, increasing the
probability that an object’s children live on
the same page of memory.
Couldn’t say if anyone attempts this

Root

A D B

C

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 27

Copying - Adding Memory!

Double
Memory size

Copy cycle cost is the
same, but two copy cycles
versus six means 1/3 the
memory moved. Less
overhead, and application
runs faster.

Free

Used

Time -> Flip

1 2 3 4 5 6

1 2

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 28

Copying - Beyond the Copy Bump

* Needs double the memory.
- "No such thing as a free lunch." (Maybe we don’t care today)

* Moves Large objects around.
- Use LargeSpace for large objects, only manipulate headers.
- Need FixedSpace to manage fixed objects

* Old objects get moved around forever...
- Division of memory into read-only, fixed and large will improve

performance. But rules to classify an object are?

* Paging? Does that happen anymore? Could be cheaper to
add more memory. . .

* But lots of survivors can ruin your day.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 29

Copy or Mark/Sweep?

* Hardware dictates that Sweep is faster than Copy because
linear memory access is faster than random access to
memory locations. Tough to measure (nanoseconds)

* But, hey you don’t have a choice. . . You must live with
what you have, only Java claimed to provide the feature of
changing out the GC if you wanted (but do they?)

* In reality no GC algorithm is "best", but some are very
good for Smalltalk , and not for other languages.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 30

Train Algorithm (A Java sideShow)

Car 1.2Car 1.1 Car 1.3

Train 1

Car 2.2Car 2.1 Car 2.3

Train 2

Car 3.2Car 3.1 Car 3.3

Train 3

PS Look at VA segments and wonder

Car 1.2Car 1.1

Train 1

Car 2.2Car 2.1 Car 2.3

Train 2

Car 3.2Car 3.1 Car 3.3

Train 3

Car 2.4

Scan Train 1 move objects to 2.4

Garbage

A

B

C

D

B,C,A,D
Garbage

Scan Train 2 move A,D to 2.4

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 31

Generational Garbage Collector

* Algorithms

- Lieberman-Hewitt

- Moon

- Ungar

- Wilson

* Most agree this theory is the best for Smalltalk.

* Basically we only worry about active live objects.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 32

Generational Garbage Collector

* In 1976 Peter Deutsch noted:
- ’Statistics show that a newly allocated datum is likely to be either

’nailed down’ or abandoned within a relatively short time’.

* David Ungar 1984
- ’Most objects die young’

* Now remember studies show:
- Only 2% of Smalltalk objects survive infancy. Other languages

might have different conclusions
- 80 to 98 percent of Objects die before another MB of memory is

allocated. (Hold that thought, is this still true?)

* So concentrate efforts on survivor objects.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 33

Generational Garbage Collector

* Separate objects by age into two or more regions.
- For example: Tektronix 4406 Smalltalk used seven regions, 3 bits

* Allocate objects in new space, when full copy accessible
objects to old space. This is known as a scavenge event.

* Movement of objects to old space is called tenuring.

* Objects must have a high death rate and low old to young
object references. (Eh?). . . Both very important issues, I’ll
explain in a few minutes.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 34

InterGenerational Pointers
(Remember Tables)

* Must track references from old generation to new objects.
Why? We don’t want to search OldSpace for references
into NewSpace, but how? Now remember:
(a) Few references from old to young are made: (< 4%).
(b) Most active objects are in NewSpace not OldSpace.

* Solution: Track these references as they happen!
- In most Smalltalk systems this tracking storage is

known as the Remembered Table (RT).
- Tracking adds a minor bit of overhead. . .
- But is there an issue?

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 35

Generational Scavenge Event

RootA

B

C

E

A

D

B CRoot

Remembered Table (RT)

New Space

E

Old Space

A B and C get copied via Root
reference. E is copied via OldSpace
reference from D, which is
remember by being stored in the
Remember Table.

-> tenure ->

InterGenerational References

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 36

1

1 0

1 0 0

1 0 0 0

1 0 0 0 0

1 0 0 0 0 0

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0

GC Event RT Ent r i es

VM Failure occurs at end of chart, Why?

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 37

Generations?

* Multiple generations are good, but only 2 or 3 are needed.
- We could cascade objects down a set of OldSpace regions (early

tek solution). The longer an object lives, the further down it goes,
but effectiveness versus complexity gives diminishing returns.

- Once a tenured object becomes garbage, we need another method
to collect it, and a compacting Mark/Sweep collector is needed.

* Tuning a generational garbage collector is complex and
time consuming. How many generations should we do?
When and what should we tenure?

* David Ungar and Frank Jackson wrote many of the rules....

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 38

VisualWorks Eden

* Ungar and Jackson Rules:

(1) Only tenure when necessary.

(2) Only tenure as many objects as necessary.

* These GC rules are fully exposed in VisualWorks creation
space, or what we know as NewSpace:

Eden

semi-space A

semi-space B
Generation GC

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 39

A few items before the break:

* Stack Space

* Weak Objects

* Finalization

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 40

Stack Space
* Each method sent needs an activation record, or context

object. This exists for the life of the executing method.
* As much as 80% of objects created are context objects.

- If we could avoid allocating, initializing, and garbage collecting
these objects, we could make things run faster!

* Solutions:
- Implement context allocation/deallocation as a stack.

This is VW’s StackSpace.
* If StackSpace is full, older contexts are converted into objects.

- Squeak has special MethodContext link-list to shortcut
much of the allocation work on reuse of a context.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 41

Weak Objects a GC Extension...

* The rule was:
- If an object is accessible, then it isn’t garbage.

* The weak reference concept changes that rule:
- If the object is only accessible by a weak reference,

then it can be garbage collected. If a strong (non-weak)
reference exists, then the object cannot be GCed.

- If a weak object is going to be or is garbage collected,
then notify any interested parties. This is called
finalization.

* Weak Objects are not Evil! They just have Weaknesses.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 42

Weak Objects - VW Examples
* (1) Symbols are unique, but how?

- The class Symbol has a class variable that contains an array of
WeakArrays, defining all symbols in the image.

- If you create a new symbol, it is hashed into one of the
WeakArrays. If you refer to an existing symbol, the compiler finds
the reference to the symbol in the WeakArray which is what the
methodcontext points to.

- If you delete the method containing the symbol, it might be the last
strong reference to that symbol! If this is true, at some point the
symbol is garbage collected, and finalization takes place. This puts
a zero into the WeakArray slot, and that symbol disappears from
your image!

* (2) The VW ObjectMemory used finalization to signal
when a scavenge event has happened (in 2.5x, not 5.x).

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 43

Weak Objects

* Each implementation has a different way of making object
weak, indicating finalization, and doing the ’handshake’
- VisualAge foo makeWeak
- VW & Squeak see WeakArray

* Some implementations give pre-notification of finalization.
* All you need to do is read the docs.
* Remember Finalization can be slow and untimely.

- Usually applications want instantaneous finalization, unable to
achieve this results in nasty issues shortly after delivery.

* VisualAge provides Process finalizeCycle to force finalization.
* Ephemeron are? (fixing issues with finalization order).

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 44

Thoughts

* GC theories are old, well understood algorithms.

* Each has trade-offs.

* Language differences will impact choice.

* Your mileage may vary.

* Nope, you can’t turn it off!
- Ah, maybe you can, but it will hurt.

* Onward to some concrete implementations

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 45

Squeak Memory Layout

OldSpace (GCed only via Full GC)

NewSpace (Incremental GC)

0x00000000
startOfMemory

0x00ABFDEF
youngStart

0xFFFFAABB
endOfMemory
revserveMemory

G
R
O
W
T
H

* Simple allocation, move a pointer, check some things.
* IGC on allocation count, or memory needs
* Full GC on memory needs
* Can auto grow/shrink endOfMemory (3.0 feature)
* Tenure objects if threshold exceeded after IGC, moves youngStart down.
* Use LowSpace semaphore to signal memory problems

Remember TableC Heap gets DLLs, and fixed objects.
0xFFFFFFFF

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 46

Squeak Decisions
* Allocate an object, means updating a pointer then nilling/zeroing the

new object’s words and filling in the header.
* Exceed N allocations, allocationsBetweenGCs, invokes a IGC
* Allocate enough memory to cut in to lowSpaceThreshold, causes:

- A IGC, and possible FullGC, and signal lowspace semaphore.
- In 3.0 it may advance endOfMemory if possible.

* Too many survivors (according to tenuringThreshold),
- IGC will move youngStart pointer past survivors after IGC.

* On Full GC youngStart could get moved back towards memoryStart.
* Remember Table is fixed size, if full this triggers fullGC.
* MethodContexts, allocated as objects, and remembered on free chain.

- Cheaper initialization to reduce creation/reuse costs.

* Too small a forwarding table (set in VM) means multiple full GCs

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 47

Squeak VM Data, array of values

1 end of old-space (0-based, read-only)
2 end of young-space (read-only)
3 end of memory (read-only)
4 allocationCount (read-only)
5 allocations between GCs (read-write)
6 survivor count tenuring threshold (read-write)
7 full GCs since startup (read-only)
8 total milliseconds in full GCs since startup (read-only)
9 incremental GCs since startup (read-only)
10 total milliseconds in incremental GCs since startup (read-only)
11 tenures of surviving objects since startup (read-only)
21 root table size (read-only)
22 root table overflows since startup (read-only)
23 bytes of extra memory to reserve for VM buffers, plugins, etc.
24 memory headroom when growing object memory (rw)
25 memory threshold above which shrinking object memory (rw)

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 48

Squeak Low Space

* Smalltalk lowSpaceThreshold
- 200,000 for interpreted VM, 400,000 for JIT.

* Smalltalk lowSpaceWatcher
- Logic is primitive. VM triggers semaphore if memory

free drops under the lowSpaceThreshold, this causes a
dialog to appear. Also includes logic for memoryHogs
API but not used anywhere.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 49

VisualWorks Memory Layout V5.i2

* Allocate objects or headers in Eden (bodies go in Eden, Large, or Fixed).

* Full? Copy Eden and active semi-space survivors to empty semi-space.

* When semi-space use exceeds threshold, tenure some objects to OldSpace.

* Once in OldSpace, use a Mark/Sweep GC to find garbage.

semi-space A

semi-space BEden

LargeSpace

RT OldSpace

PermSpaceORT

FixedSpace
Stack

Code
Cache

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 50

VW Eden Tuning

semi-space A

semi-space B

Eden Generation GC

(ObjectMemory actualSizes) at: 1
ObjectMemory sizesAtStartup: #()

ObjectMemory thresholds
ObjectMemory thresholds: #()

actualSizes Returns 7 element array of byte sizes.
First element is Eden’s current size in
bytes (204800).

sizesAtStartup: Needs 7 element array of multipliers. A
multiplier 1.5 means allocate 1.5 times
default size at startup. Eden is first slot
value.

thresholds Returns 3 element array of percentages.
First element is Eden’s threshold when
to start GC (96%).

thresholds: Needs 3 element array of percentages.
A value of 0.75 means start GC work at
75% full.

200K

Is Eden sized OK? Perhaps...

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 51

VW Survivor Spaces
semi-space A

semi-space B
(ObjectMemory actualSizes) at: 2
ObjectMemory sizesAtStartup: #()

actualSizes Second element is Survivor space’s
current size in bytes (40960) x 2.

sizesAtStartup: Survivor space is second slot.
thresholds Second element is Survivor space

threshold of when to start tenure to
OldSpace (62.5%). (Careful)

thresholds: Set to desired values

ObjectMemory thresholds
ObjectMemory thresholds: #()

40K

Make bigger. Watch threshold!

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 52

VW LargeSpace - 1025 Magic

LargeSpace

(ObjectMemory actualSizes) at: 3
ObjectMemory sizesAtStartup: #()

actualSizes Third element is LargeSpace current
size in bytes (204800).

sizesAtStartup: Large space is third slot.

thresholds Third element is LargeSpace threshold.
Start tenure to OldSpace at (90.2344%).

thresholds: Set to desired values

ObjectMemory thresholds
ObjectMemory thresholds: #()

Make bigger!

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 53

Old, Fixed, Compiled (Size?)

* FixedSpace, OldSpace, and CompiledCodeCache
could be made bigger. But application behavior
will drive values for FixedSpace and OldSpace.

* CompiledCodeCache, try different values (small
multiplier factors). Note PowerPC default value is
too small. Might buy 1%

* StackSpace shouldn’t need altering, depends on
application, just check it to confirm.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 54

Generational GC Issues:
* Early Tenuring

- Objects get tenured to OldSpace too early then they promptly die
clogging OldSpace with corpses. See my article in Dec. 1996
Smalltalk Report (remember them?) (Also on my Web Site).

- Issue: Problem Domain working set size exceeds NewSpace size.

semi-space A

semi-space B
Eden Generation GC

Object Space Needed to Solve Problem

¥ Solution - Make semi-spaces bigger.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 55

Allocation Rate % better versus SuvivorSpace multiplier factor

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

SurvivorSpace size times default size

128 Averge Byte Size
256 Averge Byte Size

512 Averge Byte Size

55% better, because of less GC work

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 56

OldSpace Growth or GC?

* As Objects flow into OldSpace, what should it do?
- Perform Incremental Mark/Sweep faster?
- Stop and do a full GC?
- Expand?

* Expansion is the easiest choice!
- Much cheaper than GC work (VM viewpoint).
- Paging is expensive (O/S viewpoint). Perhaps rare now
- VisualWorks & VisualAge choice with modifications.
- Squeak 3.x choice too.
- But rules may allow/disallow

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 57

VW OldSpace - A Place to Die

Segment 1 2 3

¥Segments are mapped to indexed slots of instance of ObjectMemory.
¥Allocated in blocks. Size set by needs, or by increment value.

¥ Allocating a very large object will cause allocation of large block.

¥ Note new concept in VW 2.5.2: Shrink footprint.
¥ ObjectMemory(class)>>shrinkMemoryBy:

4

ObjectMemory current oldBytes

ObjectMemory current oldSegmentSizeAt: 2
ObjectMemory current oldDataSizeAt: 2

Free

Note FixedSpace is similar

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 58

VW OldSpace - Thresholds

* FreeSpace (total and contiguous) versus hard and soft low
space limits affect behavior of IGC. Where should logic
be placed?. . . (note some other structures lurk here)

ObjectMemory current oldDataBytes

ObjectMemory current oldBytes

ObjectMemory current availableFreeBytes

ObjectMemory current availableContiguousSpace

ObjectMemory softLowSpaceLimit

ObjectMemory hardLowSpaceLimit

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 59

VW OldSpace - OTEntries & OTData

* OldSpace segment has Object Table, Object Table Entries for Data
bodies, and somewhere lurks the remember table (RT).

* Most of these tables grow/shrink based on dynamics/need. But only the
Object bodies get compacted.

* Ability to move objects between segments means you can vacate, and
free a block, thus shrinking the memory footprint of VW.

* Note PermSpace is similar. But only GCed on explicit request

OTE
OT
FC
RT

’Free’ Object Bodies

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 60

IBM VisualAge Memory Layout v5.5.1

semi-space - A

semi-space - B

NewSpace

OldSpace (RAM/ROM)
Fixed
Old
Space

* Generational Copy Garbage Collector & Mark/Sweep.
* Copy between semi-spaces until full
* Then tenure some objects to current OldSpace segment

* Object loader/dumper can allocate segments (supports ROM)
* EsMemorySegment activeNewSpace

*To see current NewSpace semi-spaces size. Default is 262,144 in size
*abt -imyimage.im -mn###### (Start with ### byte in NewSpace)

Code
Cache

262,144

252,144

Segments (lots!)

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 61

VisualAge Segment

Allocated Free

* Segments are mapped to instances of EsMemorySegment.
* OldSpace allocator seems simple, just allocate via pointer move
* Newer versions of VA will release memory based on -mlxxxx value

EsMemorySegment heapBytesAllocated EsMemorySegment heapBytesFree

heapAllocheapBase heapTop

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 62

VisualAge - Segments

EsMemorySegment activeNewSpace (scavenge target)
EsMemorySegment(

Type: NEW,RAM, (ID: 16r0)

Size: 262144 bytes [16r1AD966C -> 16r1B1966C] (69.4 % free)

Heap: [16r1AD966C -> 16r1B1966C]

Alloc: 16r1AED76C Scan: 16r1AD9F08

Free List: [16r0 -> 16r0]

Remembered Set: [16r0 -> 16r0])

* 4 of them in my image. But 2 are empty and about 2K in size. The
other two are 262,144 bytes in size.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 63

VisualAge - Segments

EsMemorySegment activeOldSpace (tenure target)
EsMemorySegment(

Type: OLD,RAM, (ID: 16r0)

Size: 2098152 bytes [16r1C30010 -> 16r1E303F8] (8.51 % free)

Heap: [16r1C30010 -> 16r1E2F6AC]

Alloc: 16r1E03EB8 Scan: 16r1E03EB8

Free List: [16r0 -> 16r0]

Remembered Set: [16r1E3039C -> 16r1E303F8])

* My Image has 231 segments range from 28 to 2,790,996 bytes

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 64

VisualAge has fine grained segments

EsMemoryTypeOld = Objects in the space are old.
EsMemoryTypeNew = Objects in the space are new.
EsMemoryTypeROM = Memory segment considered Read-only.
EsMemoryTypeRAM = Memory segment is Read-Write.
EsMemoryTypeFixed = Objects in this memory segment do not move.
EsMemoryTypeUser = User defined segment.
EsMemoryTypeCode = Segment contains translated code.
EsMemoryTypeExports = Segment containing IC export information.
EsMemoryTypeDynamicInfo = Contains Dynamic image information.
EsMemoryTypeAllocated= Was allocated by VM

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 65

VW MemoryPolicy-Logic

* Delegation of Responsibility for:
- idleLoopAction

* A low priority process that runs the Incremental Garbage
Collector (IGC) based on heuristics after a scavenge event.

- lowSpaceAction
* A high priority process that runs when triggered by the VM if

free space drops below the soft or hard thresholds. The soft
threshold invokes the IGC to run in phases, and possibly does a
compaction. The hard threshold triggers a full IGC and perhaps
a full compacting GC if the situation is critical...

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 66

VisualWorks Growth - Controls
MemoryPolicy>>
measureDynamicFootprint

ForGrowthRegime

MemoryPolicy>>
measureDynamicFootprint
 ForMemoryUpperBound

These two methods set up two blocks to:
(1) Measure and control growth before aggressive IGC work.
(2) Measure and control total growth of image.

Default logic measures dynamic footprint.Alternate logic
measures growth since VM start. Growth will occur until
memory exceeds 16,000,000 (growthRegimeUpperBound).
Maximum growth is CPU limited or (memoryUpperBound).

Instance variables

idleLoopAllocationThreshold

(16,000,000) IGC Byte threshold- (Scavenges times Eden full
threshold) needs to exceed this value -> ~80 scavenges with
200K Eden. When reached, idleLoopAction will trigger a full
interruptable IGC cycle, collecting the maximum amount of
garbage. If free space is fragmented, a compacting GC is done.

maxHardLowSpaceLimit (250,000) Byte threshold-When reached, the lowSpaceAction
process is triggered to do a full non-interuptable IGC cycle,
and/or a possible compacting GC cycle, and/or grow OldSpace.

lowSpacePercent (25%)- Ensures hard low space limit is minimum of 25% of
free space or current maxHardLowSpaceLimit. As OldSpace is
adjusted, the lowSpace limits are altered.

preferredGrowthIncrement (1,000,000) Bytes-To grow if we grow.

growthRetryDecrement (10,000)-If the preferred growth increment is too big for
hosting O/S, decrement by this value and try again.

incrementalAllocationThreshold (10,000)- Free space minus this, gives SoftLowSpaceLimit.
(Trigger for interruptable phased IGC work).

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 67

When Does VW Growth Happen?

* Growth can happen when (but only up to memoryUpperBound):

- (1) Allocation failure for new: or become: This means the new
object we want has exceeded the maximum amount of continuous
free space we have. Grow and/or garbage collect to meet need.

- (2) Space is low (HardLowSpaceLimit), and growth is allowed.
Easy choice-just grow by increment value, if we’ve not exceeded
growthRegimeUpperBound. Otherwise, see next step.

- (3) Space is low, and growth wasn’t allowed ,and after we do a full
GC, a incremental GC or compacting GC. Then grow by increment
value, unless we’ve reach memoryUpperBound.

* Growth refused, then Notifier window.
- Space warning bytes left: ####
- Emergency: No Space Left

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 68

VW Incremental GC thoughts

* Free space is below soft limit. Run IGC in steps. For each
step, ask the IGC to do a certain amount of work, or quota.

* Free space is below hard limit. Run full IGC cycle without
interrupts.

* If image is ’idle’ and we’ve scavenged
idleLoopAllocationsThreshold bytes, then run IGC in
microsteps. For each step, run to completion, but stop if
interrupted.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 69

Altering VW IGC Idle Behavior
MemoryPolicy Variables:
incMarkingRate

(40) Factor used to calculate the number of Objects to mark in one IGC.
pass. This is calculated from the minimum of 2,000 or:

 Objects * incGCAcclerationFactor * percentOfFreeSpaceAllocated
incMarkingRate

Objects here include ones in free chains.

incUnMarkingRate (8) Factor used to calculate the number of Objects to unmark if an unmark
step is called for. This is calculated from the minimum of 10,000 or:

markedObject s* incGCAcclerationFactor *percentOfFreeSpaceAllocated
incUnmarkingRate

incNillingRate (2) Factor used to calculate the number of bytes of weak objects to examine
when nilling. This is calculated from the minimum of 50,000 or:

markedWeakBytes * incGCAcclerationFactor * percentOfFreeSpaceAllocated
incNillingRate

incSweepingRate (8) Factor used to calculate the number of Object to sweep if an sweep step
is called for. This is calculated from the minimum of 10,000 or:

Object s* incGCAcclerationFactor *percentOfFreeSpaceAllocated
incSweepRate

incGCAcclerationFactor (5) Modifier for IGC. Increasing value causes IGC to work harder for each
step, up to the hard-coded limits.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 70

VW incGCAccelerationFactor

* Acceleration? Quotas? Limits?

- Concept was to limit IGC idle work moderated by
percentage of free space, to a given cut-off point. This
allows us to increase effort as free memory decreases,
but only to a point.

- Executing a full quota means a work stoppage of N
milliseconds. Quotas picked were based on CPUs of
1990. These default quotas are smaller than they could
be. So consider increasing IGC work.

* May slow image growth, but at cost of reduced performance....

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 71

Memory and Performance Versus IGC Acceleration

11.6MB

8.7MB

100%

93%

8

8 . 5

9

9 . 5

1 0

1 0 . 5

1 1

1 1 . 5

1 2

5 1 0 1 5 2 0

Memory (MB)
Performance

Memory footprint
goes down 3MB
at cost of 7%
of performance,
when factor goes
from 5 to 20

IGC Acceleration factor

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 72

Squeak Commands

* Smalltalk garbageCollect Full GC, returns bytes free.

* Smalltalk garbageCollectMost Incremental GC

* Utilities vmStatisticsReportString Report of GC numbers.

* Smalltalk getVMParameters Raw GC numbers.

* Smalltalk extraVMMemory Get/Set extra Heap Memory

* Smalltalk bytesLeftString Get bytes free + expansions

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 73

VW - GC commands
ObjectMemory globalGarbageCollect
ObjectMemory globalCompactingGC
ObjectMemory compactingGC

Mark/Sweep PermSpace and
OldSpace.
Mark/Sweep all plus compact.
Mark/sweep/compact Oldspace, not
PermSpace.

ObjectMemory garbageCollect Mark/Sweep and compact only
OldSpace.

ObjectMemory quickGC Incremental Mark/Sweep of
OldSpace, no compaction.

ObjectMemory
addToScavengeNotificationList:

ObjectMemory
 removeFromScavengeNotificationList:

Add/Remove object to list of
dependents to be notified, when a
scavenge event has occurred.

ObjectMemory
dynamicallyAllocatedFootprint

Report on VM memory usage.

ObjectMemory current
 availableFreeBytes

Report of free memory in
OldSpace.

ObjectMemory current numScavenges Report on number of Scavenges.

Many other queries exist

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 74

VisualWorks Thoughts

* Compaction trigger logic has holes.
- Some fragmentation counters aren’t considered.

- Remember Table size isn’t considered.

* NewSpace sizes is usually too small.

* Must look at growth limit and max limit. (settings)

* OldSpace growth increment is too small.

* Server applications can stress allocator/GC logic
and cause VM failure. (Sad but true)

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 75

VisualAge - Control
* Control is done via command line arguments:

-mo#### Initial OldSpace size. Set to image size
(allow for initial growth).

-mn#### Size of NewSpace semispace... 256K Set
higher?

-mf#### Size of FixedSpace. Change depending on
application needs.

-mi#### OldSpace increment size. Defaults to
2048K.

-ml#### Minimum free memory threshold, 500K.
Possible change

-mx#### Maximum growth limit defaults to
unlimited. Pick a limit? -mx1 disables

-mc#### Code Cache size. Defaults to 2 million.
-mcd to disable. Change size?

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 76

VisualAge - GC commands
System globalGarbageCollect Trigger a Mark/Sweep.

System scavenge Trigger a NewSpace scavenge.

Process addGCEventHandler:
Process removeGCEventHandler:

Add/Remove a handler from the
queue of handlers that get notified
when a scavenge or global GC
occurs.

System totalAllocatedMemory Amount of memory allocated by
VM.

System availableMemory
System availableFixedSpaceMemory
System availableNewSpaceMemory
System availableOldSpaceMemory

Amount of memory, various
viewpoints.

EsbWorkshop new open stat tool. Gives scavenger and
global GC timings for code
fragments, also other info.

[] reportAllocation: Report of allocated classes for
executed block.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 77

VisualAge Thoughts

* Increase NewSpace to avoid early tenuring.
* Increase OldSpace headroom.

- Defer first Mark/Sweep

* Increase OldSpace Increment to reduce GC work.
- Many grow requests add excessive overhead.

* Review Code Cache Size.
- Trade performance for memory

* Watch freedom of expansion, or shrinkage.
- Paging happens when?, watch -mlxxxx value

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 78

Must Remember

* Always avoid paging.

* Tuning might solve growth issue and paging. . .

* Algorithms , algorithms, algorithms.
- Solve memory problems in the code, not in the GC.

- Don’t make garbage.

* Lots of time could be used by the GC
- unless you look you don’t know

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 79

1 Compact GC event: Full mark/sweep/compact OldSpace

2 Compacting decision has been made

3 IGC justified, interruptible, full cycle via idle loop call

4 Idle Loop Entered

5 Low Space Action Entered via VM trigger

6 Incremental GC, (work quotas) attempt to cleanup OldSpace

7 Request grow; Grow if allowed

8 LowSpace and we must grow, but first do aggressive GC work:
Finish IGC, do OldSpace Mark/Sweep GC, if required followup
with OldSpace Mark/Sweep/Compact

9 Grow Memory required

10 Grow Memory attempted, may fail, but usually is granted

Real world examples of tuning
Key to Events

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 80

0

1

2

3

4

5

6

7

8

9

1 0

50 6 0 7 0 8 0 9 0 1 0 0 1 10 1 2 0 1 3 0 1 4 0 1 5 0

2.2MB

3.2MB Free4 idle

8 lowSpace
critical
Finish IGC
do quick GC

2 Need to Compact
1 Compact event

9 Must grow
10 Grow event

5 lowSpace
6 Incremental GC(interruptable)

IGC unable to keep up with
garbage, so freespace decreases

Example with VisualWorks (1997), about 22MB of memory used

Compact

Notes: No Idle Loop GC work (3)

3 IGC justified

1 MB growth

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 81

Test Case background

* Ad Hoc Viewer
- Query returns 272 rows

- Trace on scan lines, (7518 scan lines)

- Scroll graphic from left to right, 33 screen updates, wait
1 second between scroll events

* Automated test tool made test case repeatable. Delay was
added to give the idle loop process the ability to run.

* Think about SUnits to test expectations of response time.

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 82

0

2

4

6

8

1 0

1 2

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

Case 1: User interaction test case before changes

6 Compaction events + 9 Quick GC events

10 Grow OldSpace

8 Finish IGC+Quick GC

2 Need to Compact
1 Compact event

3 IGC justified

OldSpace - Free Memory

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 83

0

1

2

3

4

5

6

7

8

9

1 0

0 5 0 1 00 1 50 2 0 0 2 50 3 00 3 50

3 Compaction events + 5 QuickGC events versus 6 and 9

IGCAcceleration factor changed
from 5 to 15. More GC work done in
idle loop processing so fewer GC events

10 Grow OldSpace

8 Finish IGC+Quick GC

Case 1: User interaction test case after changes,

Old Case was ~460 seconds, we save 130 secs

2 Need to Compact
1 Compact event

3 IGC justified

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 84

0

2

4

6

8

1 0

1 2

0 . 0 5 . 0 1 0 . 0 1 5 . 0 2 0 . 0 2 5 . 0 3 0 . 0 3 5 . 0 4 0 . 0 4 5 . 0 5 0 . 0 5 5 . 0 6 0 . 0 6 5 . 0 7 0 . 0 7 5 . 0 8 0 . 0 8 5 . 0 9 0 . 0 9 5 . 0

Case 2: Automated Testing before changes

One Grow, six QuickGC, five Compacting GC

10 Grow OldSpace

8 Finish IGC+Quick GC

Time required - Seconds: 92

4 Idle Loop entered
5 LowSpaceAction
6 Incremental GC

2 Need to Compact
1 Compact event

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 85

0

2

4

6

8

1 0

1 2

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 8 5 9 0 9 5

 Case 2: Automated Testing after changes, (10X Survivor Space)

Seconds: 81 11 seconds better

One Grow, one QuickGC, one Compacting GC,
and one idle loop GC cycle, versus 1, 6, 5

10 Grow OldSpace

8 Finish IGC+Quick GC

3 IdleLoop GC requested
4 Idle Loop entered
5 LowSpaceAction
6 Incremental GC

Notes: After growth OldSpace memory is not
consumed, and working set is contained in NewSpace.
Observe how FreeSpace stays constant.

2 Need to Compact
1 Compact event

OldSpace - Free Memory

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 86

Case 3: User interface interaction before changes

0

1

2

3

4

5

6

7

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

3 IdleLoop GC requested
4 Idle Loop entered
5 LowSpaceAction
6 Incremental GC

OldSpace - Free Memory decrease

LargeSpace - Memory Used, (dynamic)

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 87

0

1

2

3

4

5

6

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

Case 3: User interface interaction after changes: SurvivorSpace 10x

3 IdleLoop GC requested
4 Idle Loop entered
5 LowSpaceAction
6 Incremental GC

OldSpace - Free Memory decrease slowed

LargeSpace - Memory Used, (Static)

Idle Loop Processing only, no GC work

Old case was ~164 seconds
We save ~70 seconds

' copyright 1997,1998,1999,2000,2001 John M McIntosh, all rights reserved. Page 88

Parting Thoughts

* Go slow, changing thresholds by 100x is bad. . .

* Server applications work best for tuning, but also
have unique problems. (beware lack of idle work).

* Build SUnits for test cases to enable repeatability

* Vendors do supply tools (ie. VisualAge).

* Go look.
You might be surprised where the time goes.

