
abcdefg

CxStates

Little Smalltalk Exercise:
A dynamically defined state model

not based on the state pattern

presented by
Alfred Wullschleger
Swiss National Bank

abcdefg

awu060829 2

The Author
● Smalltalker since 1992
● Project OVID at Fides Informatik (1992-1999)

– OVID currently in production more than 11 years
● Project OASE at Swiss National Bank (since

1999 in production)
– Financial Statistics from Swiss Banks and

Companies
– based on Gemstone/S and VisualWorks
– ongoing development under full production

abcdefg

awu060829 3

Motivation
● We needed a user configurable state model

– so, preferably should not be class based
– should allow easy communication with the „outer

system“ = the system components which are not
part of the state model itself

● Solution: CxStates
– ANSI Event Model as implementation pattern

abcdefg

awu060829 4

Basic classes (1)
● CxBaseState

– defines a state
● has a name
● has a transitionTable

– contains legal transitions to other states through transition
entries

● CxTransitionEntry
– defines a transition by a symbol and the new state

● includes transitionActions

abcdefg

awu060829 5

Basic Classes (2)
● CxActionSequence and CxAction

– for execution of methods in the „outer System“
– extensible analoguous to the event model

● CxStateEnsemble
– Defines a complete state diagram
– Defines all legal transition symbols

abcdefg

awu060829 6

Action execution

current
State

new
State

Transition

PreTransition
Actions

PostTransition
Actions

preTransitionActions in context of current state
postTransitionActions in context of new state

abcdefg

awu060829 7

Action

CxAction

A CxAction contains a message
send. CxAction is declared in the

transitionEntry. The message
receiver is typically inserted during

the transition

abcdefg

awu060829 8

Declaration of actions
● in CxBaseState:

– whenCxPreTransition: aTransitionSymbol send:
aSelector to: aReceiver

● adds a CxAction to the PreTransitionActionSequence
● aReceiver can be nil: the receiver can be dynamically set

when the transition is executed
● polymorphically delegated to CxTransitionEntry

– whenCxPostTransition: aTransitionSymbol send:
aSelector to: aReceiver

● the same in context of the new state

abcdefg

awu060829 9

CxTransitionContext
● Is an argument holder for the messages sent to

the „outer system“
– combines receiver and arguments for the declared

action
– includes currentState (either the pre- or the

postTransition state!)
● CxBaseState>>doTransition:

 aCxTransitionContext
– Basic method for the execution of the transition

abcdefg

awu060829 10

CxBaseState>>doTransition:
● Executes the defined CxActions

– By delegation to CxTransitionEntry>>doTransition: ,
and finally to CxAction>>doTransition:

● Returns
– nil, when the transition is illegal, state unchanged
– false, when the transition is inhibited, state

unchanged
– the new state, in all other cases

● Inhibit by a special CxAction: CxCondition
– Must returns true or false

abcdefg

awu060829 11

Demonstration
● Automatic Coffee Machine

– Power switch
– „Make Coffee“ button
– grinding automatic (timer)
– Heating (temperature sensor, not simulated)
– brewing automatic (timer)
– „Stopp brewing“ button
– Water supply not simulated

abcdefg

awu060829 12

Coffee States

Switched Off

Switched On

Grinding/
Heating

Heating

Brewing

Init

initializeMachine

switchPowerOn

pressButtonForCoffee
stopGrinding

startBrewing
cupFilled

cancelBrewing

abcdefg

awu060829 13

Extensions
● CxCondition

– allows to inhibit preTransitions by outer system
conditions

– analogous to CxActions but must return a boolean
● CxPostTransitionEntry

– technical class for post states which do not contain
transitionEntries for the corresponding transition
symbol

– PostTransitionEntries must be defined in the post
state!

abcdefg

awu060829 14

Thank you for listening

Questions?

