
Mondrian: Scripting Visualizations

Michael Meyer, Tudor Gı̂rba
Software Composition Group, University of Bern, Switzerland

1 Introduction

Visualization is representing data into pictures for
supporting reasoning. For the interpretation to be as
easy as possible, we need to be as close as possible
to the original data.

The primary focus of our approach is to offer the
programmer the possibility of visualizing his data
model while using his preferred environment and
tools. That is why, we have built Mondrian, an
engine that puts all the emphasis on providing the
needed basic pieces and that places the control in the
hand of the programmer.

2 Scripting visualizations with
Mondrian

In this section we give a simple step-by-step example
of how to script visualizations using Mondrian. The
example builds on a small model of a source code
with 32 classes. The task we propose is to provide a
simple overview of the classes in the system.

Creating a view. To make the things as easy as pos-
sible for the programmer, we have designed Mon-
drian to work like a view the programmer paints.
Hence, the first thing we do is to create an empty
view:

view := ViewRenderer new.
view open.

Adding nodes. Suppose we can ask the model ob-
ject for the classes. We can add those classes to the
visualization by creating a node for each class, where
each node is represented as a Rectangle.

view := ViewRenderer new.
view nodes: model classes
 using: (Rectangle withBorder width: #NOA; height: #NOM;
 liniarColor: #LOC within: model classes).
view open.

In the case above, NOA, NOM and LOC are methods
in the object representing a class and return the value
of the corresponding metrics.

Adding edges. To show how classes inherit from
each other, we can add an edge for each inheritance
relationship. In our example, supposing that we can
ask the model for all the inheritance objects between
the classes in the model, given an inheritance object,
we will create an edge between the node holding the
superclass and the node holding the subclass. Like
in the case of the nodes, when specifying the shape,
we made reference to methods that are defined in the
inheritance object:

view := ViewRenderer new.
view nodes: model classes
 using: (Rectangle withBorder width: #NOA; height: #NOM;
 liniarColor: #LOC within: model classes).
view edges: model inheritances
 using: (Line from: #superclass to: #subclass).
view open.

1

Layouting. To make the above graph understand-
able, we layout the nodes in a tree. By default, the
nodes are arranged in a horizontal line.

view := ViewRenderer new.
view nodes: model classes
 using: (Rectangle withBorder width: #NOA; height: #NOM;
 liniarColor: #LOC within: model classes).
view edges: model inheritances
 using: (Line from: #superclass to: #subclass).
view layout: TreeLayout new.
view open.

Nesting. To obtain more details for the classes, we
would like to see which are the methods inside. To
nest we specify for each node the view that goes in-
side. Supposing that we can ask each class in the
model about its methods, we can add those methods
to the class by specifying the view for each class:

view := ViewRenderer new.
view nodes: model classes
 using: (Rectangle withBorder liniarColor: #LOC within: model classes).
 forEach: [:eachClass |
 view nodes: eachClass methods using: Rectangle withBorder.
 view layout: CheckerboardLayout new.
].
view edges: model inheritances
 using: (Line from: #superclass to: #subclass).
view layout: TreeLayout new.
view open.

Adding inter-edges. The edges are created by spec-
ifying the from and the to objects. Because we can
have the objects at various levels of nesting, it is im-
portant to specify the location from where the lookup
of the objects should start. For example, if we want
to add invocations edges between the methods, and
if we suppose that we can ask the model object about

those invocations we can add them like we added in-
heritances:

view := ViewRenderer new.
view nodes: model classes
 using: (Rectangle withBorder liniarColor: #LOC within: model classes).
 forEach: [:eachClass |
 view nodes: eachClass methods using: Rectangle withBorder.
 view layout: CheckerboardLayout new].
view edges: model invocations
 using (Line from: #invokedBy: to: #invoked).
view edges: model inheritances
 using: (Line from: #superclass to: #subclass).
view layout: TreeLayout new.
view open.

Decorating shapes. By default, the sense of the
edges is shown by the convention that edges leave
from the bottom-right of the node and end on the
top-left of the node. However, when the user wants
to specify an arrow at the end of the line, he can use
decorations. For example, when we want to show
the arrows on the inheritances all we have to do is
to decorate the Line with an Arrow. Decorations can
be applied to any figure. In fact, Rectangle with-
Border is implemented as Rectangle new decorated-
With: Border new.

view := ViewRenderer new.
view nodes: model classes
 using: (Rectangle withBorder liniarColor: #LOC within: model classes).
 forEach: [:eachClass |
 view nodes: eachClass methods using: Rectangle withBorder.
 view layout: CheckerboardLayout new
 view edges: model invocations
 using (Line from: #invokedBy to: #invoked)].
view edges: model inheritances
 using: ((Line from: #superclass to: #subclass)
 decoratedWith: Arrow new).
view layout: TreeLayout new.
view open.

2

3 Mondrian prototype

Design. Figure 1 reveals the core structure of our
framework. Each Figure holds an Object. The Fig-
ures are implemented directly on top of the graph-
ical framework, but they hold no specific value for
the visualization. The entire responsibility of what
gets drawn belongs to the Shape, which is a speci-
fication of how the Figure should be displayed on a
canvas (via displayFigure:on:). The Shape holds no
state, and thus it is possible to share a Shape between
several nodes or edges. Furthermore, each Figure is
a graph and holds several other Figures, and it also
knows the Layout to be applied on its children.

Figure

Layout

Object

NodeFigure EdgeFigure

1 * 1

*1
*

...

Shape
decoratedWith:
displayFigure:on:

TreeLayoutTreemapLayout...

ViewRenderer
graphStack
nodes:using:
node:using:
nodes:using:forEach:
node:using:forIt:
edges:using:
edge:using:
layout:
open

Rectangle
width:
height:
color:
liniarColor:within:

Line
color:
width:

1

*

Figure 1: The internal model of Mondrian.

To make the script easy to write, we have designed
the ViewRenderer to hide the internal details of the
model. The structure of the ViewRenderer was in-
spired by the Renderer of Seaside.

User Interface. Having an explicit model of the vi-
sualization, allowed us to create an editor that maps
model characteristics to the visualization. For exam-
ple, the below image we show a screenshot of such
an editor that makes use of the a priori knowledge

of the structure of the data model and for a given se-
lected figure, generates an editor that asks for each
representation shape the different visualization char-
acteristics.

Figure 2: Mappings editor based on Moose.

In our example, the view presents the hierarchy of
Mondrian classes and the editor is built on top of the
Moose environment and allows us to map metrics to
the Rectangle and to the Border selected.

Visualization specification should be instance based.
For example, in the next screenshot we show the
same visualization as in the previous one, only now
the ViewRenderer is shown using a Class Blueprint.

Figure 3: Instance based visualization.

3

