
ESUG, 2003–08–28, Bled.si

Extreme Late Binding
why syntax, semantics, and pragmatics should be 1st-class objects

Ian Piumarta

ian.piumarta@inria.fr

http://www-sor.inria.fr/projects/vvm

Copyright 2003 by Ian Piumarta All Rights Reserved.

1

Reproduction permitted for personal use.

about this talk

dynamic architecture for building dynamic languages / systems . . .

autonomous systems

• embedded systems

• vertical evolutionary maintenance

dedicated systems

• DSLs

• domain-specific semantics

highly reactive &| dynamic systems

• active networks

• virtual virtual machines

Copyright 2003 by Ian Piumarta All Rights Reserved.

2

Reproduction permitted for personal use.

embedded systems

hardware

h/w pre-initialization

YNVM

h/w post-initialization

drivers

application(s)

OS services

drivers

C+asm

C

C

YNVM

YNVM

YNVM

YNVM
 �µ-libc

component
pool

YNVM

YNVM

 boot script

standard interfaces

Copyright 2003 by Ian Piumarta All Rights Reserved.

3

Reproduction permitted for personal use.

active networks

code

capsule

capsules (e.g. ants) active packets (e.g. plan)

packet

proto

treatment
node

code

interesting
design space

interesting
design spaceextremely interesting design space

hybrid active networks

 data

packet

 data

node

code

treatment

environment

interpreterinterpreter

preloaded protocol
implementation

dynamically-loaded
protocol implementation

env

env

code

capsule

env

Copyright 2003 by Ian Piumarta All Rights Reserved.

4

Reproduction permitted for personal use.

domain-specific components

application traditional CORBA

VVM-based
applet generator library

dynamic
native

code

myObjAdaptor.‘‘script’’

myOAdistributed_obj.f(x)

bizarre ORBy stuffCORBA.xyz(...)

native codegen

elsewhere

myIOP
proto

Copyright 2003 by Ian Piumarta All Rights Reserved.

5

Reproduction permitted for personal use.

virtual virtual machines

‘‘VM’’

object
memory

application
loader

virtual processor

memory

application
reader

primitives

file

program

operating system

CPU

network

card
reader

obmem
glue

VVEE

VVM

GC

PBR

VMlet
loader

bytecode
glue

primitive
glue

executive

VMlets

VM specs
formats

objects

instructions

primitives
file!

net

rdr

Mister Toast

raw
incinerate

Copyright 2003 by Ian Piumarta All Rights Reserved.

6

Reproduction permitted for personal use.

implementation challenges

object storage?

• ‘object’ has as many definitions as there are systems that claim to be
‘object-oriented’ (and several more besides)

– GC? primitive (or new/unusual) types? persistence? . . . ?

few ‘fundamental’ concepts

(very) many interpretations/implementations of each

⇒ need for genericity

Copyright 2003 by Ian Piumarta All Rights Reserved.

7

Reproduction permitted for personal use.

implementation challenges (2)

primitives?

• semantics

– synchronisation, saturated arithmetic, . . .

• pragmatics

– import from execution environment (libc, . . .)

– resource discovery? can we use the result? FFIs are expensive

• launch compiler, link .so
– delays, resource comsumption, sandboxing

– who says there’s a compiler at all

– compilers aren’t created equal

Copyright 2003 by Ian Piumarta All Rights Reserved.

8

Reproduction permitted for personal use.

implementation challenges (3)

basic execution machinery?

• app loading/initialisation

• invocation mechanisms (dynamic binding, . . .)

• new data types (and operations thereon)

N ‘basic’ concepts
M interpretations/implementations of each concept
M >> N

⇒ need for genericity

fancy execution machinery?

• reflection, introspection, intercession?

(extremely hard to decouple from both object model and execution mechanisms
simultaneously)

Copyright 2003 by Ian Piumarta All Rights Reserved.

9

Reproduction permitted for personal use.

conventional programming languages

(with respect to implementing dynamic systems / languages)

what’s wrong with this picture?

Application

System

Hardware

Libraries

Compiler

Syntax
SemanticsSource

Runtime

Pragmatics

UDP

Copyright 2003 by Ian Piumarta All Rights Reserved.

10

Reproduction permitted for personal use.

conventional programming languages

Application

System

Hardware

Libraries

Compiler

Syntax
SemanticsSource

Runtime

malleable (under programmer control)

Pragmatics

UDP

Copyright 2003 by Ian Piumarta All Rights Reserved.

11

Reproduction permitted for personal use.

conventional programming languages

Application

System

Hardware

Libraries

Compiler

Syntax
SemanticsSource

Runtime

malleable (under programmer control)

rigid (imposed from outside)

Pragmatics

UDP

Copyright 2003 by Ian Piumarta All Rights Reserved.

12

Reproduction permitted for personal use.

conventional programming languages

Application

System

Hardware

Libraries

Compiler

Syntax
SemanticsSource

Runtime

Language

Environment

malleable (under programmer control)

rigid (imposed from outside)

"black box" (hermetically sealed)

Pragmatics

UDP

Copyright 2003 by Ian Piumarta All Rights Reserved.

13

Reproduction permitted for personal use.

conventional programming languages

two black boxes:

• language

• environment

rigidity

• syntax (DSLs?)

• semantics (atomic test-and-set?)

• pragmatics (primitives?)

• libraries (protocol evolution / in-field servicing?)

• system (drivers, scheduling, resource management, . . . ?)

let’s look at this another way. . .

Copyright 2003 by Ian Piumarta All Rights Reserved.

14

Reproduction permitted for personal use.

“typical” programming languages

are:

collections of concrete syntax, semantics and pragmatics, (often) designed by a
committee (that typical programmers never get to meet), then sealed inside an
impermeable shell and presented as faits accomplis to. . .

Copyright 2003 by Ian Piumarta All Rights Reserved.

15

Reproduction permitted for personal use.

“typical” programmers

who (all to frequently) spend inordinate amounts of time. . .

Copyright 2003 by Ian Piumarta All Rights Reserved.

16

Reproduction permitted for personal use.

tackling “artificial barriers”

to expressivity and creativity, from the “outside” of their programming language’s
implementation, wishing desperately that they could get at. . .

Copyright 2003 by Ian Piumarta All Rights Reserved.

17

Reproduction permitted for personal use.

powerful, low-level language features

(and other juicy stuff) locked away on the “inside”.

for example: if you need new “primitive” functionality in Smalltalk, your only recourse
is often to. . .

Copyright 2003 by Ian Piumarta All Rights Reserved.

18

Reproduction permitted for personal use.

a “typical” virtual machine hacker

who will drill a new “primitive” hole (or three) through the hermetic “language shell”
for you.

(but don’t forget we’re talking as much about C[++] as Smalltalk here)

Copyright 2003 by Ian Piumarta All Rights Reserved.

19

Reproduction permitted for personal use.

some observations about conventional languages

without much justification (for lack of time)

• disasterously early-bound

• insufficient meta-data

• no reification of implementation

• artificially-closed access to internals

(characteristics which are inherited by their application “offspring”)

⇒

• late-bind everything (including language implementation)

• make everything 1st-class (including input [‘programs’] and output [native code])

• leave the entire compilation chain open by default (but make it trivial to close it
off entirely, selectively, or according to artbitrary verification policies as needed)

for some suitable definition of “everything”

(traditionally: the simplest possible one)

Copyright 2003 by Ian Piumarta All Rights Reserved.

20

Reproduction permitted for personal use.

the simplest possible definition of “everything”

lowest common (implementation) denominator:

• platform’s native code

• C ABI

• connection to libc / posix / whatever . . .

assume nothing about anything else

expose this “everything” to the application (or the app’s runtime)

• in the simplest, least-constrained form possible

then go have (lots of) fun building maximally-dynamic systems on top of it

Copyright 2003 by Ian Piumarta All Rights Reserved.

21

Reproduction permitted for personal use.

unconventional programming languages

Application

System

Hardware

Libraries

Dynamic
Compiler

Syntax
SemanticsSource

Runtime

malleable (under programmer control)

delicate (but not impossible ;-)

Pragmatics

Copyright 2003 by Ian Piumarta All Rights Reserved.

22

Reproduction permitted for personal use.

a universal dynamic compiler: YNVM

it’s not a VM (in the language sense) but it sure smells like one

• dynamic compilation (native code, CABI)

• structured, language / host-independent input

• simple, persistent metadata (program structure, environment)

+ visible bindings to metadata constructors / accessors

• customisable compiler semantics (application-defined transformations on input)

• access to all levels of compilation & code generation (for irrepressible hackers)

• access to the host system (dlsym or emulation)

applications inherit

• incremental development / debugging

• unlimited reflection & intercession

• live, in-field serviceability

• 100% (+/– 15%) performance of fully optimised C code

Copyright 2003 by Ian Piumarta All Rights Reserved.

23

Reproduction permitted for personal use.

YNVM: time for a picture

object memoryparser

GC

console interface

tree compiler

stack compiler

dynamic assembler

heap

text

object
structures

asbtract
machine insns

concrete
machine insns

code generator

keyboard

external
file, etc...

program-generated
structures

program-generated
concrete insns

program-generated
abstract insns

native code

parse trees,

malloc()

optimizer

meta-data

Copyright 2003 by Ian Piumarta All Rights Reserved.

24

Reproduction permitted for personal use.

the YNVM food chain

TL 3: the system implementor (end-user VM, language or app designer)

TL 2: dynamic C compiler (YNVM)

TL 1: platform-independent code generator (VPU)

TL 0: dynamic assembler (ccg)

bottom-up (with examples). . .

Copyright 2003 by Ian Piumarta All Rights Reserved.

25

Reproduction permitted for personal use.

dynamic assembler

puts bytes in memory corresponding to (parameterised) machine instructions

• practical

– instruction “templates” inline in source code

– standard symbolic assembler notation

– converted to emitters by a combination of preprocessor + macro library

• fast (< 3 insns executed / insn generated)

• horrendously non-portable

(but widely ported: PowerPC, Sparc, ARM, IA32, IA64)

example?

Copyright 2003 by Ian Piumarta All Rights Reserved.

26

Reproduction permitted for personal use.

“virtual” processor

abstracts over the actual hardware

• stack machine

• implements everything needed for C

– arithmetic, logical operators

– control structures

– stack allocation (c.f., alloca)

– labels, computed gotos

– variadic functions

– . . .

• performs all substantive tasks for “client” application:

– code optimisation, register allocation

– calling convention weirdness

• idempotent

• no externally-visible state (other than a “closure” over the vpu’s state)

example?

Copyright 2003 by Ian Piumarta All Rights Reserved.

27

Reproduction permitted for personal use.

dynamic C compiler (YNVM)

one “primitive” function

• dlsym (or an emulated equivalent)

• C ABI compliance does the rest

examples?

a truly symbolic programming language over the vpu

• functionally equivalent to C (with some obvious improvements)

• input = ASTs (S-exprs)

• arbitrary concrete syntax (but I like parentheses and prefix operators)

• top-level expressions compiled & executed immediately

– modifications to compiler (syntax, semantics) felt immediately

example?

Copyright 2003 by Ian Piumarta All Rights Reserved.

28

Reproduction permitted for personal use.

dynamic C compiler (YNVM)

tiny, internal object memory

• list, symbol, string, number

• input forms

• intermediate compilation state

• persistent metadata

• reifies all syntax and semantics implemented by compiler

data = programs = metadata = programs . . .

• arbitray program-directed program transformations

example?

Copyright 2003 by Ian Piumarta All Rights Reserved.

29

Reproduction permitted for personal use.

1st-class syntax and semantics

symbols arranged in namespaces

variables bound to symbols (obviously)

all compiler syntactic and semantic elements bound to symbols

• default behaviour supplied for a few

• redefined / extended arbitrarily

• effects can be localised within a namespace

⇒ context-dependent syntax / semantics

• idem for “intrinsics” (e.g., __APPLY__)

⇒ (re)definition of basic execution machinery

– vpu and assembler can be reified

– new calling conventions, . . .

example?

Copyright 2003 by Ian Piumarta All Rights Reserved.

30

Reproduction permitted for personal use.

example: inline cache detail

(define (syntax ->)
(lambda (form) ; (-> object (selector args))

(syntax.match form (? ,recv (,[object.symbol? sel] ,@args))
(let ([posic (:posic.malloc)])
‘(let ([_recv ,recv])

((if (= (:class.class-of _recv)
(:posic.prev-class ,(object.integer posic)))

(:posic.dest-meth ,(object.integer posic))
(relink ,(object.integer posic)

_recv
,(object.integer sel)))

_recv
,@args)))]))

Copyright 2003 by Ian Piumarta All Rights Reserved.

31

Reproduction permitted for personal use.

relevance to Smalltalk?

convert Slang to native code on-the-fly

SmallInteger>>+
<primitive>
| lhs rhs sum |
lhs ← self stackValue: 1.
rhs ← self stackValue: 0.
((self isIntegerObject: rhs)

and: [sum ← (self integerValue: lhs) + (self integerValue: rhs).
self isIntegerValue: sum])

ifTrue: [self pop2thenPush: (self integerObject: sum)]
ifFalse: [self success: false]

• c.f., Ralph et al. ∼1990

• failure code?

• intercession?

reduced ‘Smalltalk’ systems:

• SqueakScript

• a “pragmatic” version of Slate

Copyright 2003 by Ian Piumarta All Rights Reserved.

32

Reproduction permitted for personal use.

system-building methodology

c.f., Herbert Simon, parable of the watchmakers

• complex systems will evolve from simple systems much more rapidly if there are
stable intermediate forms than if there are not; the resulting complex systems in
the former case will be hierarchic.

need for stable intermediate forms

• in “vertical” system / language design

• in deployment

Copyright 2003 by Ian Piumarta All Rights Reserved.

33

Reproduction permitted for personal use.

usability

user interfaces (toolsets) are environments for constructing applications

features

complexity

habitability

Copyright 2003 by Ian Piumarta All Rights Reserved.

34

Reproduction permitted for personal use.

usability (2)

YNVM = “user interface” for constructing programming systems

features

habitability

complexity

Copyright 2003 by Ian Piumarta All Rights Reserved.

35

Reproduction permitted for personal use.

conclusion

• choice of flexibility / complexity “compromise”

5 (well-defined, in reality even more) levels of entry

• dynamic compilation overhead seen by applications

>= 1 Mb native code per second (on 3 year-old hardware)

• symbolic space affects semantic space

domain-specific compiler customisation

design & optimise your solution space, then use it

• agility

programs are just meta-data (like the rest)

semantics are dynamic (interpret or compile the same code)

the compiler’s implementation is just part of the client’s namespace

system state created incrementally, described dynamically, changes felt
immediately

• simplicity: ∼ 10 KLOC, 250 KB code, for everything

• performance: 0.85 – 1.15 static (optimised) C programs

Copyright 2003 by Ian Piumarta All Rights Reserved.

36

Reproduction permitted for personal use.

conclusion-in-a-picture

YNVM

biblio.so

mmap(fichier) shmat(autreProcessus)

programme.ynvm

YNVM

compiler charger

attachermapper

modifier
recompiler
etendre

modifier
recompiler
etendre

and finally:

how does building a language / system / environment / application on top of all this
help our “typical” programmer?

Copyright 2003 by Ian Piumarta All Rights Reserved.

37

Reproduction permitted for personal use.

an “atypical” programming language

⇒

homogenous

• no artificial distinctions between language implementation, runtime and
application

• no artificial barriers to expressivity or creativity

but can be very confusing for. . .

Copyright 2003 by Ian Piumarta All Rights Reserved.

38

Reproduction permitted for personal use.

a “typical” user of an atypical language

to whom the extreme generality of the YNVM might pose problems, until they
understand that

Copyright 2003 by Ian Piumarta All Rights Reserved.

39

Reproduction permitted for personal use.

programming the YNVM

must commence by

• adding semantic/syntactic sugar (appropriate to the domain/application) over
the homogenous base

• then building systems on top of it

however, compared to our traditional “walnut” languages. . .

Copyright 2003 by Ian Piumarta All Rights Reserved.

40

Reproduction permitted for personal use.

digging beneath the “concrete” aspects

of any system build on the YNVM, to fiddle with or extend language / implementation
features at an arbitrary depth

remains entirely possible. . .

Copyright 2003 by Ian Piumarta All Rights Reserved.

41

Reproduction permitted for personal use.

. . . for anyone

Copyright 2003 by Ian Piumarta All Rights Reserved.

42

Reproduction permitted for personal use.

tc.cg Thu Aug 28 15:12:17 2003 1

#include <stdio.h>

#include <stdlib.h>

typedef int (*pifi)(int);

pifi rpnCompile(char *expr);

int main()

{

 pifi c2f= rpnCompile("9*5/32+");

 pifi f2c= rpnCompile("32-5*9/");

 int i;

 printf("\nC:");

 for (i = 0; i <= 100; i+= 10) printf("%3d ", i);

 printf("\nF:");

 for (i = 0; i <= 100; i+= 10) printf("%3d ", c2f(i));

 printf("\n");

 printf("\nF:");

 for (i = 32; i <= 212; i+= 10) printf("%3d ", i);

 printf("\nC:");

 for (i = 32; i <= 212; i+= 10) printf("%3d ", f2c(i));

 printf("\n");

 return 0;

}

#cpu powerpc

pifi rpnCompile(char *expr)

{

 static insn *codePtr= 0;

 pifi fn;

 int top= 3;

 if (codePtr == 0) codePtr= (insn *)malloc(1024);

 #[

 .org codePtr

]#;

 while (*expr)

 {

 char buf[32];

 int n;

 if (sscanf(expr, "%[0-9]%n", buf, &n))

 {

 ++top;

 #[lis r(top), _HI(atoi(buf))

 ori r(top), r(top), _LO(atoi(buf))]#;

 expr+= n - 1;

 }

 else if (*expr == ’+’)

 {

 --top;

 #[add r(top), r(top), r(top+1)]#;

 }

 else if (*expr == ’-’)

 {

 --top;

 #[sub r(top), r(top), r(top+1)]#;

 }

 else if (*expr == ’*’)

 {

 --top;

 #[mullw r(top), r(top), r(top+1)]#;

 }

 else if (*expr == ’/’)

 {

 --top;

 #[divw r(top), r(top), r(top+1)]#;

 }

 else

 {

 fprintf(stderr, "cannot compile: %s\n", expr);

 abort();

 }

 ++expr;

 }

 #[blr]#;

 iflush(codePtr, asm_pc);

 fn= (pifi)codePtr;

 codePtr= asm_pc;

 return fn;

}

42-1

tv.cc Thu Aug 28 15:11:41 2003 1

#include <stdio.h>

#include <stdlib.h>

typedef int (*pifi)(int);

pifi rpnCompile(char *expr);

int main()

{

 pifi c2f= rpnCompile("9*5/32+");

 pifi f2c= rpnCompile("32-5*9/");

 int i;

 printf("\nC:");

 for (i = 0; i <= 100; i+= 10) printf("%3d ", i);

 printf("\nF:");

 for (i = 0; i <= 100; i+= 10) printf("%3d ", c2f(i));

 printf("\n");

 printf("\nF:");

 for (i = 32; i <= 212; i+= 10) printf("%3d ", i);

 printf("\nC:");

 for (i = 32; i <= 212; i+= 10) printf("%3d ", f2c(i));

 printf("\n");

 return 0;

}

#include <VPU.h>

pifi rpnCompile(char *expr)

{

 VPU *vpu= new VPU;

 vpu ->Ienter()->Iarg()

 ->LdArg(0);

 while (*expr)

 {

 char buf[32];

 int n;

 if (sscanf(expr, "%[0-9]%n", buf, &n))

 {

 expr += n-1; vpu->Ld(atoi(buf));

 }

 else if (*expr == ’+’) vpu->Add();

 else if (*expr == ’-’) vpu->Sub();

 else if (*expr == ’*’) vpu->Mul();

 else if (*expr == ’/’) vpu->Div();

 else

 {

 fprintf(stderr, "cannot compile: %s\n", expr);

 abort();

 }

 ++expr;

 }

 void *entry= vpu ->Ret()

 ->compile(/*(1 << VPU::DumpAsm)*/);

 delete vpu;

 return (pifi)entry;

}

42-2

tu1.vvm Thu Aug 28 15:11:55 2003 1

(define strtol (system.dlsym 0 "strtol"))

(define rpn-compile

 (lambda (expr)

 (let ([stack (object.list.copy ’(i))]

 [mk-op (lambda (op stack)

 (let ([expr (object.list 3)]

 [rhs (object.list.remove-last stack)]

 [lhs (object.list.remove-last stack)])

 (object.list.append expr op)

 (object.list.append expr lhs)

 (object.list.append expr rhs)

 (object.list.append stack expr)))])

 (while (byte expr)

 (let ([c (byte expr)])

 (cond

 [(= c $+) (mk-op ’+ stack)]

 [(= c $-) (mk-op ’- stack)]

 [(= c $*) (mk-op ’* stack)]

 [(= c $/) (mk-op ’/ stack)]

 [1

 (let ([end (system.malloc 4)]

 [n (strtol expr end 0)])

 (object.list.append stack (object.integer n))

 (set! expr (- (word end) 1))

 (system.free end))]))

 (set! expr (+ 1 expr)))

 (let ([func (object.list.copy ’(lambda (i)))])

 (object.list.append func (object.list.remove-last stack))

 (object.println func)

 (object.eval func)))))

(let ([c2f (rpn-compile "9*5/32+")]

 [f2c (rpn-compile "32-5*9/")])

 (system.printf "\nC:")

 (do ([i 0 (+ i 10)]) ([<= i 100]) (system.printf "%3d " i))

 (system.printf "\nF:")

 (do ([i 0 (+ i 10)]) ([<= i 100]) (system.printf "%3d " (c2f i)))

 (system.printf "\n")

 (system.printf "\nF:")

 (do ([i 32 (+ i 10)]) ([<= i 212]) (system.printf "%3d " i))

 (system.printf "\nC:")

 (do ([i 32 (+ i 10)]) ([<= i 212]) (system.printf "%3d " (f2c i)))

 (system.printf "\n"))

42-3

tu2.vvm Thu Aug 28 15:11:49 2003 1

(define (syntax rpn-compile)

 (lambda (form)

 (let ([stack ‘(i)])

 (loop [i 1 (object.list.size form)]

 (let ([atom (object.list.at form i)])

 (cond

 [(object.integer? atom) (object.list.append stack atom)]

 [(object.symbol? atom) (let ([rhs (object.list.remove-last stack)]

 [lhs (object.list.remove-last stack)])

 (object.list.append stack ‘(,atom ,lhs ,rhs)))]

 [1 (system.error "cannot parse: %s"

 (object.print-string atom))])))

 ‘(lambda (i) ,@stack))))

(let ([c2f (rpn-compile 9 * 5 / 32 +)]

 [f2c (rpn-compile 32 - 5 * 9 /)])

 (system.printf "\nC:")

 (do ([i 0 (+ i 10)]) ([<= i 100]) (system.printf "%3d " i))

 (system.printf "\nF:")

 (do ([i 0 (+ i 10)]) ([<= i 100]) (system.printf "%3d " (c2f i)))

 (system.printf "\n")

 (system.printf "\nF:")

 (do ([i 32 (+ i 10)]) ([<= i 212]) (system.printf "%3d " i))

 (system.printf "\nC:")

 (do ([i 32 (+ i 10)]) ([<= i 212]) (system.printf "%3d " (f2c i)))

 (system.printf "\n"))

42-4

ex1.vvm Thu Aug 28 15:12:07 2003 1

(define gtod (system.dlsym 0 "gettimeofday"))

(define ctime (system.dlsym 0 "ctime"))

(define sleep (system.dlsym 0 "sleep"))

(define buf (system.malloc 4))

(while 1

 (gtod buf 0)

 (system.printf "\033[1A%s" (ctime buf))

 (sleep 1))

42-5

