
1

Building Robust Embedded
Software

by Lars Bak, OOVM A/S

OOVM A/S Conference ESUG 2003 Aug 2003

Purpose of the Presentation

To argue for and present a
new compact and fast

embedded Smalltalk system
that can run both hosted and

on the bare metal

OOVM A/S Conference ESUG 2003 Aug 2003

Embedded Software Today

C binaries

RTOS kernel

C libraries

C code, app1

Binary image Device

Compile Link Download/Burn

C code, app2

ICE
JTAG
Serial
-printf
-gdb

Debug

• Slow development
• Low productivity
• Unsafe programming language
• No servicability
• Very static model

Hardware device
RTOS kernel
C libraries

App1 App2

Deployed Product

OOVM A/S Conference ESUG 2003 Aug 2003

Demands of the Embedded Industy

Increased reliability
Low cost -> resource constraints
Dynamic software updates in the field
Real-time capabilities
Rapid development cycles

Is embedded Java the solution?

OOVM A/S Conference ESUG 2003 Aug 2003

Why not Embedded Java?

Does not support incremental execution
Virtual machine specification is very complicated
Bytecodes not designed for speed and compactness
Configurations for embedded systems too big

CLDC and CDC

OOVM A/S Conference ESUG 2003 Aug 2003

What can be Better?

Use of safe dynamic programming language
Increase productivity

Connect programming environment to running system
Provide incremental execution

Provide serviceablility
Debugging supported in production
On-the-fly software update

2

OOVM A/S Conference ESUG 2003 Aug 2003

Scenario

B&O can update software and debug/fix potential
problems at customer site

Internet

Firewire

B&O

OOVM A/S Conference ESUG 2003 Aug 2003

Who am I?

Spent the last 18 years designing and implementing
object-oriented virtual machines:

Beta
Self
Strongtalk
HotSpot for Java
CLDC HotSpot for Java
OOVM

OOVM A/S Conference ESUG 2003 Aug 2003

Presentation Outline

OOVM Smalltalk in embedded systems
A different Smalltalk system

Reflection vs. execution
Atomic test and store statement
Namespaces
Typed LIFO blocks

Benchmarks
OOVM demo
Product licensing

OOVM A/S Conference ESUG 2003 Aug 2003

The OOVM System

OOVM embedded platform
Tiny Smalltalk based virtual machine
Executes platform independent bytecodes
Fully dynamic system
Unified real-time resource management
No RTOS, no user C code!

OOVM programming environment
Connects to running program
Supports true incremental execution
Full serviceability and visibility

OOVM A/S Conference ESUG 2003 Aug 2003

Embedded Software Using OOVM

Virtual Machine Device

App1

• Runs directly on hardware
• Fully dynamic system

• Full application isolation
• Change anything on-the-fly

• Unified resource management
• Very small memory footprint

App2 App1.1 App1.2

Hardware device
Virtual Machine

App1

Deployed Product

App2

Download/Burn

OOVM A/S Conference ESUG 2003 Aug 2003

The OOVM System

Programming environment provides all reflective behavior
Virtual machine provides simple reflective interface
They use a simple reflective protocol for communication

Programming
environment Virtual

machine
Virtual
machine

Device drivers
Libraries

Applications

Reflective
interface

3

OOVM A/S Conference ESUG 2003 Aug 2003

• Programming support
• Bytecode compiler
• Debugging
• Profiling
• Introspection

Web client

Programming
environment

Embedded
system

Runs as a
web server

The Programming Environment

OOVM A/S Conference ESUG 2003 Aug 2003

The Virtual Machine

Basic philosophy: keep it simple!
32bit virtual machine
Scalable object heap
Compact object model

1-word object headers

New bytecode set for Smalltalk
20 bytecodes with uniform format

Portable design

OOVM A/S Conference ESUG 2003 Aug 2003

The Virtual Machine

Safe and fast control of
Memory mapped devices
Interrupts

Unified automatic resource management
Real-time garbage collection
Policy based, user definable
Guaranteed allocation/scheduling behavior per thread/application

Serviceability
True incremental program execution
Dynamic updating of user and system software with running apps
Full introspection even when running in production

OOVM A/S Conference ESUG 2003 Aug 2003

The Programming Language

Smalltalk with a few twists
Introduced

Syntax for full classes
Atomic test and store statement
Namespaces
Typed LIFO blocks

... and removed
Pool variables
Class instance variables

OOVM A/S Conference ESUG 2003 Aug 2003

Test and Store Example

Mutex = Object (
| owner |
”acquire the lock prior to evaluating the
block and then release the lock”
do: [block] = (
[
owner ? nil := Scheduler current

] whileFalse: [Scheduler yield].
block value.
owner := nil

)
)
Example: m do: [self update]

Class
name

Super
class

Instance
variable

Method

OOVM A/S Conference ESUG 2003 Aug 2003

Semaphore Implementation

Semaphore = Object (
| count |

acquire = (
[| c |

c := count - 1.
c < 0 ifTrue: [^Scheduler acquire: self].
count ? c + 1 := c

] whileFalse
)

release = (
[| c |

c := count + 1.
c < 1 ifTrue: [^Scheduler release: self].
count ? c - 1 := c

] whileFalse
)

)

4

OOVM A/S Conference ESUG 2003 Aug 2003

The Libraries

Minimal set of classes to provide basic execution
behavior
No reflective behavior

Only the programming environment can create classes
perform: is not supported

Scheduler and device drivers
Networking libraries

TCP/IP (SLIP, NIC, Firewire)

OOVM A/S Conference ESUG 2003 Aug 2003

Integer Class Hierarchy

- ObjectObjectObjectObject

- Integer

- SmallInteger (30 bits)SmallInteger (30 bits)SmallInteger (30 bits)SmallInteger (30 bits)

- LargeInteger (32 bits)LargeInteger (32 bits)LargeInteger (32 bits)LargeInteger (32 bits)

Writing device drivers on a 32 bit computer
requires 32 bit arithmetic

OOVM A/S Conference ESUG 2003 Aug 2003

Collection Class Hierarchy

- ObjectObjectObjectObject
- Collection

- OrderedCollection
- IndexableCollection

- IntervalIntervalIntervalInterval
- StringStringStringString

- CompactStringCompactStringCompactStringCompactString
- UnicodeStringUnicodeStringUnicodeStringUnicodeString

- UpdatableIndexableCollection
- ArrayArrayArrayArray
- ByteArrayByteArrayByteArrayByteArray
- ObjectArrayObjectArrayObjectArrayObjectArray

- UpdatableOrderedCollection
- ListListListList
- TreeTreeTreeTree

- UnorderedCollection
- DictionaryDictionaryDictionaryDictionary

OOVM A/S Conference ESUG 2003 Aug 2003

Namespaces

Desirable for modularizing code and dynamic
application loading
The namespace consists of nested classes
Any class can be a namespace
Examples:

Services::DebuggerAgent install

::Network::Services::DebuggerAgent install

OOVM A/S Conference ESUG 2003 Aug 2003

Achilles Heel of Smalltalk
Performance

Allocation of block contexts
Inlining of basic control structures
Flattening of code (ex. Collection hierarchy)

Interpretation overhead
Slow method invocation

Results in breaking down code abstractions

... or apply advanced inlining compiler

OOVM A/S Conference ESUG 2003 Aug 2003

Typed LIFO Blocks

Stack allocated contexts require no-escape-
guarantee
Blocks cannot be returned nor stored into heap
objects
Example from Collection

collect: [collect] do: [block] = (

self do: [:e | block value: (collect value: e)].

)

BlockBlock

5

OOVM A/S Conference ESUG 2003 Aug 2003

Making Bytecodes Compact

Bytecode set designed for compactness
20 simple bytecodes

Methods with identical bytecodes are shared
Saves 10% of space used by methods

Super bytecodes are computed based on static
bytecode-pair-histograms

Reduces the bytecodes with 45%

load nil store 1
.

1 load nil & store 1
.

short short short

OOVM A/S Conference ESUG 2003 Aug 2003

Compact Execution Stacks

Stacks contain activations but are also objects
Initial size is 512 bytes but grows as needed
Minimal activation size is 2 words

No frame pointers

Send bytecodes then become fast

receiver
return bcp
receiver

…

return bcp

Stack

Activation

OOVM A/S Conference ESUG 2003 Aug 2003

Bytecode Example

Benchmark::BenchPress::Dispatch

benchmark = (1 to: 20000 do: [:i | self method: i])

block_method
1 load_local 2

3 load_local 2

5 load_outer 2

7 send method: [13]

9 return 1

13 Literal method:

benchmark
1 load_constant 17

3 load_block 0

5 load_constant 21

7 load_positive_smi 1

9 send to:do:[]

11 load_local 5

13 return 4

17 block_method

21 Literal 20000

25 Literal to:do:[]

OOVM A/S Conference ESUG 2003 Aug 2003

Serviceability

Programming environment connect to running
embedded system
Enables debugging and updating
A set of changes can be “atomically” applied to
preserve integrity of system

Internet

Firewire

B&O

OOVM A/S Conference ESUG 2003 Aug 2003

Is Interpretation Fast Enough?

OOVM interpreter will be 2x the speed of the
fastest interpreted JVM
Profiled based compilation is possible for
performance critical code
However, too much compiled code will compromise
memory footprint

OOVM A/S Conference ESUG 2003 Aug 2003

OOVM System Characteristics

The system runs all the time!
Compact memory footprint

Minimal system executes in 128KB
Smaller than all OS+Java systems

High performance
2x fastest interpreted JVM

Minimal power consumption
Performance is important for battery life
Battery size often determine the product size

6

OOVM A/S Conference ESUG 2003 Aug 2003

Current Supported Platforms

Embedded platforms
Intrinsyc Cerfcube eval board

200MHz StrongARM
32MB RAM, 16MB Flash

ICE Lynx from TI
50MHz StrongARM
256KB RAM, no flash
Firewire
Audio and video streaming

Hosted platforms
IA32/Linux
StrongARM/Embedded Linux

OOVM A/S Conference ESUG 2003 Aug 2003

Benchmarking OOVM

Benchmarks
Microbenchmark: Stanford integer benchmarks suite
DeltaBlue
Richards

OOVM compared to
Smalltalk-X version 4.1.7 (JIT disabled)
Squeak version 3.2-4
Java KVM version 1.0.4
Java HotSpot version 1.4.0 (JIT disabled)

Benchmarking platform
Red Hat Linux 7.3
Intel IA-32 PIII 1133MHz

OOVM A/S Conference ESUG 2003 Aug 2003

Benchmark Results

0%

50%

100%

150%

200%

250%

300%

350%

400%

Microbenchmarks Richards DeltaBlue

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

OOVM
Squea k
Smallta lk/X
KVM
Ja va Hots pot

OOVM A/S Conference ESUG 2003 Aug 2003

Microbenchmark Results

0%

100%

200%

300%

400%

500%

600%

Fibo
na

cc
i

Loo
p

Tow
ers

Siev
e

Pe rm
ute

Que
en

s

Disp
atc

h

Re cu
rse Sum

Bubble
-so

rt

Quic
k-s

ort

Tree
-so

rt
Lis t

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

OOVM
Squea k
Smallta lk/X
KVM
Ja va Hots pot

OOVM A/S Conference ESUG 2003 Aug 2003

Demo of OOVM

Changing network services
on-the-flyWeb client

Programming
Environment

Embedded
system

Runs as a
web server

OOVM A/S Conference ESUG 2003 Aug 2003

OOVM Summary

Next-generation platform for embedded systems
Order of magnitude smaller
Simple, fast and reliable

Fully dynamic system
Dramatic improvement in development times and productivity
Malleable - change anything anywhere
Better than most desktop systems today!

Customer benefits
Decrease software R&D expenses
Fewer system resources required
More reliable and serviceable products

7

OOVM A/S Conference ESUG 2003 Aug 2003

When is it Available?

OOVM version 1.0 scheduled for end of this year
Dual licensing model

Free non-commercial use
Commercial use requires a license

