Building Robust Embedded
Software

by Lars Bak, OOVM A/S
OOVM

Object
Oriented
Virtual
Machines

n Demands of the Embedded Industy

= Increased reliability

= Low cost -> resource constraints

= Dynamic software updates in the field
= Real-time capabilities

= Rapid development cycles

Is embedded Java the solution?

00VMA/S Conference ESUG 2003 Aug 2003

n Purpose of the Presentation

- I
To argue for and present a
new compact and fast
embedded Smalltalk system
that can run both hosted and

the b tal
\\ on the bare meta Y,

00VMA/S Conference ESUG 2003 Aug 2003

n Why not Embedded Java?

= Does not support incremental execution
= Virtual machine specification is very complicated
= Bytecodes not designed for speed and compactness

= Configurations for embedded systems too big
= CLDC and CDC

00VMA/S Conference ESUG 2003 Aug 2003

n Embedded Software Today

- C binaries \ IcE
/ _— JTAG
- C libraries ->->- <> | Serial
_f -printf|

4 RTOS kernel -gdb

‘Compile Link Download/Burn Debug

 Slow development

) ¢ Low productivity

C libraries 4 * Unsafe programming language
* No servicability

e Very static model

Deployed Product

00VMA/S Conference ESUG 2003 Aug 2003

n What can be Better?

= Use of safe dynamic programming language
= Increase productivity
= Connect programming environment to running system
= Provide incremental execution
= Provide serviceablility
= Debugging supported in production
= On-the-fly software update

00VMA/S Conference ESUG 2003 Aug 2003

E = Scenario

Sa 1D

Firewire

= B&O can update software and debug/fix potential
problems at customer site

00VMA/S Conference ESUG 2003 Aug 2003

3 The OOVM System

= OOVM embedded platform

Tiny Smalltalk based virtual machine
Executes platform independent bytecodes
Fully dynamic system

Unified real-time resource management
No RTOS, no user C code!

= OOVM programming environment
= Connects to running program
= Supports true incremental execution
= Full serviceability and visibility

00VMA/S Conference ESUG 2003 Aug 2003

3 Who am I?

= Spent the last 18 years designing and implementing
object-oriented virtual machines:
= Beta
= Self
= Strongtalk
= HotSpot for Java
= CLDC HotSpot for Java
= OOVM

00VMA/S Conference ESUG 2003 Aug 2003

E ! Embedded Software Using OOVM

el 4

* Full application isolation

* Change anything on-the-fly
« Unified resource management
« Very small memory footprint

* Runs directly on hardware

* Fully dynamic system
Deployed Product

00VMA/S Conference ESUG 2003 Aug 2003

3 Presentation Outline

= OOVM Smalltalk in embedded systems
= A different Smalltalk system
= Reflection vs. execution
= Atomic test and store statement
= Namespaces
= Typed LIFO blocks
= Benchmarks
= OOVM demo
= Product licensing

00VMA/S Conference ESUG 2003 Aug 2003

3 The OOVM System

= Programming environment provides all reflective behavior
= Virtual machine provides simple reflective interface
= They use a simple reflective protocol for communication

Libraries
Device drivers

Re
}

00VMA/S Conference ESUG 2003 Aug 2003

Programming
environment

The Programming Environment

Web client
d

=

Programming
environment

Programming support

b . Bytecode compiler
sel . Debugging
- Profiling
. Introspection
Embedded

system a

00VMA/S Conference ESUG 2003 Aug 2003

The Programming Language

= Smalltalk with a few twists

= Introduced
= Syntax for full classes
= Atomic test and store statement
= Namespaces
= Typed LIFO blocks
= ... and removed
= Pool variables
= Class instance variables

00VMA/S Conference ESUG 2003

Aug 2003

The Virtual Machine

= Basic philosophy: keep it simple!
= 32bit virtual machine
= Scalable object heap
= Compact object model
= 1-word object headers
= New bytecode set for Smalltalk
= 20 bytecodes with uniform format
= Portable design

00VMA/S Conference ESUG 2003 Aug 2003

Test and Store Example

Mutex = Object (
| owner |

7acquire the lock prior to evaluating the

block and then release the lock” ‘
do: [block]l = (

[
owner ? nil := Scheduler current
] whileFalse: [Scheduler yield 1.
block value.
owner := nil
)
)
Example: m do: [self update]

00VMA/S Conference ESUG 2003

Aug 2003

The Virtual Machine

= Safe and fast control of
= Memory mapped devices
= Interrupts
= Unified automatic resource management
= Real-time garbage collection
= Policy based, user definable
= Guaranteed allocation/scheduling behavior per thread/application
= Serviceability
= True incremental program execution
= Dynamic updating of user and system software with running apps
= Full introspection even when running in production

00VMA/S Conference ESUG 2003 Aug 2003

Semaphore Implementation

Semaphore = Object (
| count

acquire = (
L]el
¢ := count - 1.
c < 0 ifTrue: [“Scheduler acquire: self].
count ? ¢ + 1 := ¢
1 whileFalse

release = (
[]ec]
c := count + 1.
¢ < 1 ifTrue: [“Scheduler release: self].
count ? ¢ - 1 :=¢
1 whileFalse

00VMA/S Conference ESUG 2003

Aug 2003

B The Libraries

= Minimal set of classes to provide basic execution
behavior

= No reflective behavior
= Only the programming environment can create classes
= perform: is not supported

= Scheduler and device drivers

= Networking libraries
= TCP/IP (SLIP, NIC, Firewire)

00VMA/S Conference ESUG 2003 Aug 2003

B Namespaces

= Desirable for modularizing code and dynamic
application loading

= The namespace consists of nested classes
= Any class can be a namespace

= Examples:
= Services::DebuggerAgent install

= ::Network: :Services: :DebuggerAgent install

00VMA/S Conference ESUG 2003 Aug 2003

B Integer Class Hierarchy

- Object
- Integer
- SmallInteger (30 bits)
- LargeInteger (32 bits)

= Writing device drivers on a 32 bit computer
requires 32 bit arithmetic

00VMA/S Conference ESUG 2003 Aug 2003

E Achilles Heel of Smalltalk
L. Performance

= Allocation of block contexts

= Inlining of basic control structures

= Flattening of code (ex. Collection hierarchy)
= Interpretation overhead
= Slow method invocation

= Results in breaking down code abstractions

... or apply advanced inlining compiler

00VMA/S Conference ESUG 2003 Aug 2003

B Collection Class Hierarchy

- Object
- Collection
- orderedcCollection
- IndexableCollection
- Interval
- String
- CompactString
- Unicodestring
- UpdatableIndexablecCollection
- Array
- ByteArray
- ObjectArray
- UpdatableorderedcCollection
- List
- Tree
- Unorderedcollection
- Dictionary

00VMA/S Conference ESUG 2003 Aug 2003

B Typed LIFO Blocks

= Stack allocated contexts require no-escape-
guarantee

= Blocks cannot be returned nor stored into heap
objects

= Example from Collection

s

collect: [collect] do: [block] = (
self do: [:e | block value: (collect value: e) 1.

00VMA/S Conference ESUG 2003 Aug 2003

B Making Bytecodes Compact

= Bytecode set designed for compactness
= 20 simple bytecodes
= Methods with identical bytecodes are shared
= Saves 10% of space used by methods
= Super bytecodes are computed based on static
bytecode-pair-histograms
= Reduces the bytecodes with 45%

short short short
1 [loadnil|[store] =——— [load nil & store 1
OOVMA/S : Conference ESUG 2003

Aug 2003

Firewire

= Programming environment connect to running
embedded system

= Enables debugging and updating

= A set of changes can be “atomically” applied to
preserve integrity of system

00VMA/S Conference ESUG 2003 Aug 2003

B Compact Execution Stacks

= Stacks contain activations but are also objects
= Initial size is 512 bytes but grows as needed

= Minimal activation size is 2 words 1
= No frame pointers

= Send bytecodes then become fast

Activation{

Stack

00VMA/S Conference ESUG 2003

Aug 2003

B Is Interpretation Fast Enough?

= OOVM interpreter will be 2x the speed of the
fastest interpreted JVM

= Profiled based compilation is possible for
performance critical code

= However, too much compiled code will compromise
memory footprint

00VMA/S Conference ESUG 2003 Aug 2003

B Bytecode Example

Benchmark: :BenchPress: :Dispatch

benchmark = (1 to: 20000 do: [:i | self method: i 1)

benchmark
load_constant 17

3 load block [

5 load constant 21

7 load _positive smi 1

block method
1 load local 2
3 load_local 2
9 send to:do:[] 5 load outer 2
11 load_local 5 7 send method: [13]
T 9 return 1
13 Literal method:

13 return 4

17 block_method

21 Literal 20000
25 Literal to:do:[]

00VMA/S Conference ESUG 2003

Aug 2003

B OOVM System Characteristics

= The system runs all the time!
= Compact memory footprint
= Minimal system executes in 128KB
= Smaller than all OS+Java systems
= High performance
= 2x fastest interpreted JVM
= Minimal power consumption
= Performance is important for battery life
= Battery size often determine the product size

00VMA/S Conference ESUG 2003 Aug 2003

Current Supported Platforms

= Embedded platforms
= Intrinsyc Cerfcube eval board
= 200MHz StrongARM
= 32MB RAM, 16MB Flash
= ICE Lynx from TI
= 50MHz StrongARM
= 256KB RAM, no flash
= Firewire
= Audio and video streaming
= Hosted platforms
= [A32/Linux
= StrongARM/Embedded Linux

00VMA/S Conference ESUG 2003 Aug 2003

Microbenchmark Results

EO0OVM
B Squeak
s00%
m O Smalitalk/X
E OKW
= a0 1 M M Java Hotspot
s
5
3
2 300% +— E =
H
2
= 200%] =
S
4
100% I
0%
&> & & & S o 3 & & & &S
& \9°Q & ,_}64 ,@’\ S & & & LSS
& <9 RO A O & & &
< < & & <
oovMA/s Conference ESUG 2003 Aug 2003

Benchmarking OOVM

= Benchmarks
= Microbenchmark: Stanford integer benchmarks suite
= DeltaBlue
= Richards
= OOVM compared to
= Smalltalk-X version 4.1.7 (JIT disabled)
= Squeak version 3.2-4
= Java KVM version 1.0.4
= Java HotSpot version 1.4.0 (JIT disabled)
= Benchmarking platform
= Red Hat Linux 7.3
= Intel IA-32 PIIT 1133MHz

00VMA/S Conference ESUG 2003 Aug 2003

Demo of OOVM

Changing network services
g‘n—the-ﬂy

Web client
o — &
Programming
Environment
Embedded
system
OOVLHA/:U N = Conference ESUG 2003 Aug 2003

Benchmark Results

Zoow
350% B Squeak
O Smallta lk/X
300% OKwW
| M Java Hotspot

Relative execution time

Microbenchmarks Richards DeltaBlue

00VMA/S Conference ESUG 2003 Aug 2003

OOVM Summary

= Next-generation platform for embedded systems
= Order of magnitude smaller
= Simple, fast and reliable

= Fully dynamic system
= Dramatic improvement in development times and productivity
= Malleable - change anything anywhere
= Better than most desktop systems today!

= Customer benefits
= Decrease software R&D expenses
= Fewer system resources required
= More reliable and serviceable products

00VMA/S Conference ESUG 2003 Aug 2003

E When is it Available?

= OOVM version 1.0 scheduled for end of this year

= Dual licensing model
= Free non-commercial use
= Commercial use requires a license

00VMA/S Conference ESUG 2003 Aug 2003

