
Inside AOStA

an adaptively optimizing Smalltalk architecture

Paolo Bonzini—ESUG 2003, Bled

What is AOStA? 1

AOStA is an experimental project hoping to implement Self’s optimization

techniques in a Smalltalk virtual machine.

There are some similarities and some differences:
√

AOStA does use profiled execution to identify optimization techniques

in a Smalltalk virtual machine.
√

AOStA will use dynamic deoptimization to allow source-level

debugging of optimized code.

x AOStA’s optimizer is written in Smalltalk.

x AOStA compiles to optimized bytecode instead of native code.

Profiled execution 2

An AOStA enabled VM has two areas for JIT-compiled methods.
√

The optimized area works as usual
√

In the unoptimized area methods have a countdown for each send and

backward branch

. When the counter trips, the optimizer is called back by the VM!

Collecting type information 3

An AOStA enabled VM has Polymorphic Inline Caches and allows

Smalltalk code to read them.
√

PICs are a natural way to find information about the types of the

receivers.
√

Many virtual machines already implement them!

The optimizer’s objectives 4

The optimizer can:
√

Will do some type inferencing based on the known types of the

primitives’ answers
√

Inline methods whose receiver class is constant, or replace them with

constant-class sends.
√

Duplicate different parts of the methods to specialize for the receiver

classes contained in the PIC.
√

Use additional bytecodes to perform common primitive operations

directly from the translated methods

. SmallInteger operations

. instantiation

. accessing indexed instance variables, either with or without

bounds-checking

The optimizer’s architecture 5

The optimizer reads and produces bytecode. As with other compiler

projects, it is split into:
√

a front-end (done). Converts bytecode to SSA form, stored as

instances of SSANode.
√

a middle-end (still very limited). Does the optimization tasks.

Currently it can perform inlining, code duplication is the biggest thing

that is lacking)
√

a back-end (to be done) recreates bytecodes from SSA form.

Responsible for converting some special selectors to the extended

bytecodes.

The front-end: the SSANode hierarchy 6

Similar to the Smalltalk compiler’s node hierarchy but more low-lovel

(gotos instead of structured control flow).

First hierarchy level

SSANode

StatementNode assignments, sends, branches
ValueNode intermediate values in a computation (variables,

message sends)

A ValueNode can be converted to a StatementNode with a decorator, the

EffectNode.

The front-end: the SSANode hierarchy 7

StatementNode

StatementNode

BranchNode branch unconditionally to another basic block
ConditionalNode branch conditionally to another basic block

EffectNode decorator for ValueNode

AssignmentNode also holds def-use chains
ReturnNode method returns

BlockReturnNode block returns
SequenceNode groups instances of StatementNode

BasicBlock fundamental unit for data-flow analyses
SSASuperblockNode used by inlining and code duplication

SSAMethodNode

VoidNode for dead-code elimination

A ConditionalNode also holds the profiling information from the virtual

machine.

The front-end: the SSANode hierarchy 8

ValueNode

ValueNode

ConstantNode

KnownTypeNode decorator for the type inferencer
MessageSendNode message sends not considered by the inliner
ReceiverNode self

RestrictNode assigns type information to other nodes
ThisContextNode thisContext

PhiFunctionNode for SSA form
PrimitiveNode holds the primitive’s error code
VariableNode another big class hierarchy, quite intuitive

Instance of MessageSendNode also hold profiling information from the virtual

machine.

The middle-end: using the SSANode hierarchy 9

Using the SSANode hierarchy is similar to using the Refactoring Browser’s

parse nodes. For example:
√

both have methods to replace a node with another
√

both heavily use visitors. In AOStA, an optimization pass is

implemented with a subclass of SSANodeVisitor: the Optimizer class

invokes many visitors in succession.

The next slides will present a simple constant-propagation pass.

The middle-end: using the SSANode hierarchy 10

There are a few predefined visitors which order the basic blocks in different

orders. Picking the correct one can speed up the optimization very much.

The system computes dominance information (which basic blocks must

execute before which) as part of converting into SSA, and this

information is available to the visitors.
√

visiting the dominator tree in breadth-first order
√

visiting the dominator tree in depth-first order
√

visiting basic blocks in no particular order (fast, useful for local

analyses such as inlining)

The middle-end: constant propagation 11

This is one of the first passes that are run. In particular, it runs before

dead-code elimination because it exposes dead assignments.

Kernel.AOStA defineClass: #ConstantPropagation

superclass: #{Kernel.AOStA.SSABreadthFirstDominatorTreeVisitor}
indexedType: #none

private: false

instanceVariableNames: ‘knownConstants ’

classInstanceVariableNames: ‘’

imports: ‘’

category: ‘AOStA’

The middle-end: constant propagation 12

Let’s start by initializing the knownConstants instance variable. It will map a

constant temporary variable’s TempNode to the corresponding ConstantNode.

initialize

super initialize.

knownConstants := Dictionary new

The middle-end: constant propagation 13

Then, whenever we find a TempNode with an entry in knownConstants, we

can replace it with the ConstantNode.

visitTempNode: aNode

knownConstants at: aNode ifPresent: [:constant |

aNode replaceWith: constant].

The middle-end: constant propagation 14

The visitor method for AssignmentNode can optimize if the right-hand of

the assignment is a ConstantNode; if it is a φ-function, we can check if the

operands of the φ-function are all the same.

If the optimization succeeds, we propagate the constant into all the uses.

Even if it does not, we recurse by calling the superclass implementation,

in order to replace the temporaries in the right-hand.

visitAssignmentNode: aNode

aNode isPhiFunctionAssignmentNode

ifTrue: [

self

visitPhiFunctionNode: aNode value

for: aNode variableNode].

aNode value isConstantNode

ifTrue: [self propagateConstantAssignmentNode: aNode]

ifFalse: [super visitAssignmentNode: aNode]

The middle-end: constant propagation 15

This method propagates the constant into all its uses.

propagateConstantAssignmentNode: aNode

knownConstants at: aNode variableNode put: aNode value.

aNode uses copy do:

[:each |

| statement |

statement := each statement.

statement isNil ifFalse: [self visitNode: statement]]

The middle-end: constant propagation 16

If the right-hand of the assignment is a φ-function, this method is

invoked, which checks if the operands of the φ-function are all the same.

visitPhiFunctionNode: aNode for: aVariableNode

| value seed constant |

value := seed := Object new.

constant := aNode inputs allSatisfy: [:each || thisValue |

thisValue := knownConstants at: each ifAbsent: [^self].

value == seed

ifTrue: [value := thisValue. true]

ifFalse: [value = thisValue]].

constant ifTrue: [

knownConstants at: aVariableNode put: value.

aNode replaceWith: value]

The middle-end: constant propagation 17

The last method in the constant propagation pass prevents recursion into

φ-function nodes, because we do not want TempNodes to be replaced there

too.

visitPhiFunctionNode: aNode

"Do nothing, we process phi functions from visitAssignmentNode:"

The pass is made of only four methods!

Conclusion 18

AOStA is:
√

fun: writing compiler code in Smalltalk is so much simpler!
√

relatively easy to support in a virtual machine, especially if it already

supports Polymorphic Inline Caching.
√

relatively portable: the interface between AOStA-enabled virtual

machines and the optimizer is well defined.

The architecture’s potential is very high—of course, as with most

experimental projects, the main problem is the implementors’ lack of free

time. You’re welcome!

